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ABSTRACT 

CdTe an II-VI semiconductor has been a leading thin film photovoltaic material due to its 

near ideal bandgap and high absorption coefficient [1]. The typical thin film CdTe solar cells have 

been of the superstrate configuration with CdS (Eg-2.42eV) as the n-type heterojunction partner.   

Due to the relatively narrow bandgap of CdS, a wider bandgap n-type window layer has recently 

emerged as a promising substitute:  alloys of MgyZn1-yO have been successfully used as the emitter 

or window layer. The benefits in the usage of MgyZn1-yO (MZO) are its tunable bandgap and wide 

optical spectrum on optoelectronic devices. Due to an increasing bandgap of the window layer, the 

carrier collection can be improved in the short wavelength range (<500 nm).  In addition alloys of 

CdSexTe1-x (CST) have also been used in the absorber layer (i.e., CST/CdTe) for the fabrication of 

CdTe devices to improve the carrier collection and lifetime [2]. The lower bandgap of the CST 

alloy can lead to higher short-circuit current (JSC), but it can also result in lower open circuit voltage 

(VOC).  Another critical aspect of the CdTe solar cell is the use of copper as a p-type dopant, which 

is typically incorporated in the cell during the fabrication of the back contact. The most challenging 

issue related to further advancing the CdTe solar cell efficiency is the relatively low level of p-

type doping, which limits the VOC.  Efforts to dope CdTe with group V dopants are yet to produce 

the desired results. 

ZnO has been used as an effective high resistivity transparent. When CdTe is deposited 

directly on sputtered ZnO, VOC of typically 500-600 mV is produced. Band alignment 

measurements indicate that a negative conduction band offset with CdS exists; alloying with MgO 

to produce MgyZn1-yO with a composition of y = 0.15 can produce a flat conduction band 
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alignment with CdS. This material has an additional benefit for improving the energy bandgap of 

the MZO for better UV light transmission in the short wavelengths. By changing the magnesium 

content from y = 0 to 0.30 allowed researchers to make the tunable conduction band offset from a 

“cliff” to a “spike,” with both increased open-circuit voltage and fill factor as increasing 

magnesium compositions [3] — the bandgap gains as expected with increased magnesium 

composition. The large compositions (y > 0.30) of MgyZn1-yO cause the enormous spike result in 

S-kink in the IV measurement so that the FF decreases. Besides, due to the instability of MZO 

material, the fabrication process has to proceed carefully. 

The properties of CST films and cells were investigated as a function of Se composition 

(x), substrate temperature (TSUB), and ambient used during the CSS deposition. The higher ratio of 

Se in CST alloy causes the smaller grain structures and lower bandgap, which profoundly 

detrimental to the device performance (VOC). However, the CST can be deposited in various 

substrate temperatures and different inert ambient gas to improve the grain structure by utilizing 

the especial Close Space Sublimation (CSS) deposition system. Therefore, despite the fact that the 

CST (25% Se) has the optical bandgap (1.37eV), the improvement of grain structure can slightly 

increase the doping concentration and decrease the grain boundary (GBs) due to increased alloys 

grain size 3X larger, which is contributed to improving the VOC [4]. The study of higher ratio Se 

of CST alloy is significant to achieve the high efficiency polycrystalline CST/CdTe photovoltaic 

devices. 

The effect of Cu doping back contact in CdSexTe1-x (CST)/CdTe solar cells with varying 

amounts of Se (x) has been investigated. The Cu-based back contact was annealed at different 

thermal temperatures in order to vary the amount of Cu in-diffusion. Net p-type doping was found 

to increase as the back-contact annealing temperature increased. All cells exhibited a decrease in 
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VOC with increased annealing temperature (i.e., higher Cu concertation), presumably due to a 

degradation of the lifetime with increased amounts of Cu [5]. However, cells with the highest Se 

composition appeared to exhibit a higher degree of tolerance to the amount of Cu – i.e., they 

exhibited a smaller loss in VOC with the increased amount of Cu.  

Extrinsic p-type doping of CdSeTe can be fabricated using two different experimental 

processes. Firstly, by using group I elements such as, Cu to substitute Cd, which is promising 

during the back contact process. Secondly, using group V (P, As, Sb) elements to substitute Te, and 

this is suitable for Cd-rich of intrinsic CdTe. Intrinsic CST alloy has lower hole density 

concentration as higher Se composition with limitation of the VOC. Thus, in order to increase the 

p-type net doping up to 1016 cm-3 the extrinsic P or As doping have been widely investigated 

recently. The research studies show the CST/CdTe devices lead to improve VOC up to 850 mV with 

higher hole density in higher Se compositions of As doped CST alloys. Nevertheless, the group V 

doped CdTe still cause the formation of compensating defects limits the upper boundary of 

dupability on the CdTe thin film solar cells. Even if a high hole density concentration is achieved 

for intrinsically-doped p-type CST/CdTe, it is believed the poor carrier lifetime in the CdTe side 

would still limit the VOC. 
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CHAPTER 1 

INTRODUCTION 

Natural gas and non-renewable energy provide around 79% of the world's electrical power 

sources in  North America and 90% of the world's total energy demands [6]. As the worldwide 

market for energy is higher than the consumption of supplies, the expense of supplying electricity 

becomes more expensive, and it is anticipated that by 2030 the cost of non-renewable generated 

electricity will exceed that of renewable sources. Another major concern is global warming 

(greenhouse issue), and climate changes are relatively associated with the use of those fossil fuels 

(coal, oil, and natural gas, etc,) as reported at the G20 summit [7]. However, it is critical to change 

to an energy power which is clean, efficient, and sustainable. The common renewable energy 

sources like wind, solar, marine, and small-scale hydropower currently provide around 2% of the 

world’s electrical energy consumption. The statistics of the energy demands and use (LCOE 

analysis) for the present and the future are shown in Figure 1 [8]. Therefore, the most significant 

renewable source of energy is solar energy, which is abundant. The sun is a crucial source of 

inexhaustible free energy for our planet Earth. Currently, new technologies are being employed to 

generate electricity from harvested solar energy. As the sun’s radiation penetrates towards the 

earth’s surface, the various spectrum of sunlight is continuously absorbed and re-emitted at very 

low temperatures, so that by the time they reach the surface, it is visible light. Approx. 97% of the 

total sunlight energy released by the sun in the outer space generates is between the wavelengths 

of 0.25 to 3.0μm. The development of PV technologies is pivotal for efficiently converting solar 

radiation into electricity.  

1 
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Figure 1  Results of LCOE calculations for the United States in 2015 and 2030 [8].  

1.1 PV Technologies  

Solar energy is clean and abundant with zero carbon emissions and is expected to be 

available for millions of years. A solar cell converts solar energy directly into electricity through 

the photovoltaic effect. Photovoltaics is a critical energy technology which has a small impact on 

the environment as it generates electricity from light, produces no air pollution or hazardous waste. 

It does not require fuels to be transported or combusted. Regarding the protection of the 

environment, my work contributes to the advancement of low cost and high efficiency CdTe based 

thin film solar cells which can be manufactured at lower costs in comparison to mainstream silicon 

wafer-based solar cells. 

1.1.1 Wafer Based PV   

Wafer based PV  commonly utilizes silicon (Si), germanium (Ge), and gallium arsenide 

(GaAs) as substrates to manufacture the solar cells devices, which are shown in Figure 2. In the 

commercial market, three different types of wafer based PV technologies are discussed below:  
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Figure 2  The PV technologies of wafer based solar cells [6]. 

1.1.1.1 Crystalline Silicon 

Silicon based PV is the most common PV technology. It is based on single crystalline 

silicon (c-Si), or multi-crystalline silicon (multi-Si) consisting of small crystals. C-Si and multi-Si 

cells are assembled into solar panels or modules as part of photovoltaic devices to generate solar 

power.  The electronic properties of crystalline silicon are well understood and controlled through 

years of development for the manufacture of microchips (i.e., IC technology). It can be produced 

with very low impurity levels.  Production of electronic silicon includes a chemical purification to 

produce hyperpure polysilicon followed by a recrystallization fabrication process to form 

monocrystalline silicon in the form of cylindrical boules. The cylindrical boules are then cut into 

wafers for the next fabrication process as the semiconductor material. Solar cells devices are 

fabricated by using crystalline silicon are often called conventional, traditional, or first-generation 

solar cells, as they were first developed in the 1950s and remained the most common type up to 

the present time [9][10]. Compared to thin film solar cells (like CdTe which is the main topic of 

this dissertation) c-Si cells are manufactured from 150 – 200 µm thickness of solar wafers due to 

the low optical absorption coefficient for Si material. 
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1.1.1.2 GaAs Solar Cells 

III-V solar cells, e.g., utilizing gallium arsenide (GaAs) as substrates. GaAs (similar to 

CdTe) has a high optical absorption coefficient, and therefore GaAs solar cells can be fabricated 

to small thicknesses.  Their efficiency is the highest of any single junction solar cell with 28.9% 

(measured under the AM1.5G spectrum (approx. 1000 W/m2) at 25 degrees Celsius) [11, 12]. The 

advantage of this high solar cell efficiency, however, is compensated by the expensive costs 

compared to traditional silicon solar technologies and thin film solar cells, which have slowed 

down their development for terrestrial applications. Many approaches have been developed for 

cost down on GaAs solar cells and still maintaining their high conversion efficiency. Amongst the 

various type of developments, two are worthy of further development, specifically: a) reusable 

GaAs substrate [13], or b) decreased the thickness of the GaAs as absorber layer [14, 15] and 

therefore lower the materials costs. 

1.1.1.3 III-V Multi-Junction Cells 

Multi-junction cells consist of multiple Group III-V thin film materials typically grown 

using metalorganic vapor phase epitaxy(MOVPE) [16]. Each Group III-V compound has a tunable 

bandgap energy to allow it to absorb a different portion of the solar spectrum.  Multi-junction solar 

cells are the most expensive PV technology, but their high efficiency and relatively low weight 

make them the most suitable option for satellites and similar space applications.  In terrestrial 

applications, they have been utilized in concentrator photovoltaics (CPV), where low-cost lenses 

and curved mirrors are used to concentrate sunlight onto small area highly efficient multi-junction 

solar cells. Nowadays, typical triple-junction solar cells consist of monolithic Group III-V 

materials such as gallium indium phosphide (GaInP), gallium arsenide (GaAs), and germanium 

(Ge) as p-n junctions, offer high efficiencies and market demand appears to be increasing, despite 
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the high cost [17][18].  GaAs based multijunction devices are the most efficient PV technologies 

to date.  The most recent record, triple-junction metamorphic cells reached a record high of 44% 

[19]. 

 

Figure 3  The most common commercial thin film solar cell in the industrial market [6]. 

1.1.2 Commercial Thin Film Solar Cells 

Although silicon-based, (C-Si and multi-Si)  solar modules still dominate the photovoltaics' 

(PV) market, emerging thin film technologies based on CdTe and CIGS have been successfully 

commercialized and offer a lower cost alternative. The advantages of semiconductor properties 

include higher absorption coefficients and direct bandgap, which are applied in the thin film solar 

cells. The benefits allow the thickness of the absorber layer decreases from a hundred microns 

(µm) to only a few microns. Therefore, the actual raw materials have been used for fabricating the 

thin film solar cells that it is believed to be lower than crystalline Si technology. Today’s most 

common thin film solar cells are including amorphous Si, cadmium telluride (CdTe), and copper 

indium gallium diselenide (CIGS) as shown in Figure 3.  

1.1.2.1 Amorphous Si 

Amorphous silicon (a-Si) is the non-crystalline structure of silicon.  It is used for solar cells 

and thin film transistors in optoelectronic devices. Due to the low deposition temperatures 

associated with this material, it can be deposited onto different types of flexible substrates, such 
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as glass, metal, and plastic. Amorphous silicon (a-Si) solar cells are typical of lower efficiency and 

suffer from an inherent instability mechanism, but the technology is one of the most 

environmentally friendly PV technologies since the productions do not use any toxic heavy metals 

such as cadmium or lead [20]. As a second-generation and commercial thin-film solar cell 

technology, amorphous silicon was once anticipated to become a significant contributor in the fast-

growing worldwide photovoltaic market in the high volume manufacturing, but has since lost its 

significance due to intense competition from traditional crystalline silicon solar cell and other thin 

film PV technologies, like CdTe and CIGS [21]. 

1.1.2.2 CdTe Thin Film Solar Cells 

The theoretical efficiency of CdTe is very promising among the semiconductors materials 

available today for a single-junction device architecture due to the bandgap of CdTe (1.45 eV). 

CdTe PV technology has manufactured and installed with the global capacity of >20 GW.  Due to 

its thermal and chemical stability are recent advances in efficiency compared, it is expected to 

continue to be a significant part of the PV technology mix. The US Department of Energy (DOE) 

anticipates that CdTe thin film solar cell is well-matched for utility-scale applications and high 

volume manufacturing to decrease the cost-effectiveness of electricity per watt by 2030 [22]. 

1.1.2.3 Copper Indium Gallium Diselenide (CIGS) 

Similar to CdTe based solar cell, cadmium indium gallium diselenide (CIGS) devices also 

have a very high absorption coefficient and high efficiency.  In addition, the cost of CIGS solar 

devices has not matched that of CdTe, and production volumes remain low. The power conversion 

efficiency of CIGS has already surpassed over 22%. CIGS thin film solar cell is perfectly favorable 

for building integrated PV applications because it can be manufactured on flexible and lightweight 

substrates. 
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1.1.3 Emerging Thin Film PV 

Emerging PV technologies also known as the third generation photovoltaic cells are still 

relatively immature and at the early stages of research and development. Figure 4. shows the 

different categories of new advanced PV technologies that have been developing recently.  

 
Figure 4  Ongoing development PV technologies in the emerging thin film solar cells [6]. 

1.1.3.1 Dye-sensitized Solar Cells 

Dye-sensitized solar cells (DSCs) are thin film cells. They are named dye-sensitized solar 

cells (DSSC) or Grätzel cells called after the Swiss chemist Michael Grätzel, who was first to 

invent this new type of PV technology [23]. The fabrication process of DSCs is simple, generally 

low cost, and utilize environmentally safe materials, which have a competitive efficiency (about 

10-14 %) even the sunlight is performed with low flux [24]. Nevertheless, one of the disadvantages 

is the temperature sensitivity of the liquid electrolyte. Consequently, the most recent research is 

still trying to enhance the electrolyte’s performance and cell for stability or finding the new type 

of organic materials or devices.  

1.1.3.2 Organic Solar Cells 

Organic solar cells can be defined by the experimental process of solar cells, the property 

of the materials, and the device layout. The two main fabrication process for productions can be 

categorized as either wet processing or thermal evaporation. Device configurations are single 

layer, bilayer heterojunction, and bulk heterojunction, and those type of devices are fabricated with 

the inter-diffused bi-layer heterojunction as intermediate between the bilayer and the bulk 
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heterojunction, so the single layer consists of only one active material, the other superstrate 

configuration based on two different types of materials: electron donors (D) and electron acceptors 

(A) respectively. In the organic DA solar devices, the photoinduced electron transfer occurs from 

the excited state of the donor to the LUMO of the acceptor, which has to be an excellent electron 

acceptor with a stronger electron affinity [25]. After separating the charge, both the electron and 

hole have to transport out to the opposite electrodes, the cathode, and the anode, respectively. 

Hence, direct current can be generated to an external circuit. 

1.1.3.3 Perovskite Solar Cells 

Perovskite solar cell (PSC), which is one of the organic solar cells are the perovskite-

structured material as an absorber layer depended on a solution-processed tin or halide. It is a 

desirable choice for commercial applications because this type of PV technologies are very cheap 

and can be easily scaled-up to large area manufacturing [26]. Perovskite solar cells have emerged 

and developed as one of the most favorable future solar cell devices due to the rapid advancements 

in efficiency. Therefore many research groups have revealed considerable interest in developing 

Perovskite solar cell. The advantages like flexibility, lightweight, and semitransparency, which are 

shown some of the valuable properties of perovskites [27]. 

1.1.3.4 Quantum Dot Solar Cells 

For the physics design of quantum dot solar cell, this PV technology utilizes quantum dots 

within the absorber material. Thus, the materials include typical silicon, CdTe, and CIS which can 

be switched by a quantum dot material itself, and it has a high optical energy bandgap which is 

utilized to tune various range of energy levels [28]. Although the efficiency of the quantum dot 

devices was still as low as 10%, it has brought up intriguing attention to the researchers because 

of its versatile properties, lightweight, and potential for high efficiencies. 
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Figure 5  The devices efficiencies table of solar cells in recent research [29]. 

1.2 The Reason for CdTe 

  The three main reasons for the utilization of CdTe thin film solar cells are described below: 

▪ Direct bandgap materials in the range of 1.1-1.45 eV for larger photo-electronic conversion. 

▪ A high optical absorption coefficient (104 – 105 cm-1) in the sunlight spectrum (400-1000 nm). 

▪ The ability to provide both n and p-type material with the use of suitable dopants. 

Cadmium telluride (CdTe) solar cells have become considerably high demanding as a massive PV 

technology market among the solar cells. Regardless of the PV market has been still dominated by 

silicon solar cells, CdTe now rises around a 10% market share [30], and it is believed to call the 

first of the second generation thin film technologies to jump to massive deployment effectively. 

Due to a direct 1.5 eV bandgap, decent optical absorption around 1 × 104-5 cm−1 [31], and pure 

binary phase chemistry, which results in eminently scalable technology for CdTe devices. Cell 

efficiencies for lab-scale devices have now exceeded 22.1% [32], and large scale modules have 

approached 18.6%, competitive with multi-crystalline silicon modules (Figure 5). It is also now 

purported to be relatively lower cost per watt technology, and be the less carbon-intensive in the 

manufacturing processes. CdTe solar cells have still considerably researched in recent years, but 

there have several critical technical challenges during the development if the issue can be 
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overcome. It is assumed that the cell performance could improve the conversion efficiencies 

approaching the theoretical maximum of 32%. This dissertation will discuss the current state of 

the CdTe PV technology and reviewing each of the critical challenges in turn before looking at 

research that is a focus on further development. 
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CHAPTER 2 

SEMICONDUCTORS AND SOLAR CELLS 

2.1 Semiconductors 

Semiconductors are substances which have the conductivity between that of insulators and 

metals. Silicon (Si) material is the most popular and abundant elemental semiconductor and has 

been extensively developed and advanced by the microelectronics industry. In general, the 

combination of group II and VI elements, and group III and V elements are among the most 

common compound semiconductors, respectively. For example, gallium arsenide (GaAs) and 

gallium nitride (GaN) are typically Group III-V semiconductors, and cadmium telluride (CdTe) 

and cadmium selenium (CdSe) is defined as group II-VI. Semiconductors are the foundation of 

modern application on electronic devices due to the variation of conductivity by employing 

different impurities in the crystal lattice of semiconductor materials. The controllable atomic level 

of impurities incorporated in a semiconductor material and which leads to change in its electrical 

characteristics is the so-called doping process. Based on the type of majority charge carrier – 

electrons or holes - the semiconductor can be n or p-type. For example, adding phosphorus, a group 

V element, into Si produces a free electron, increasing the concentration of free electrons, as shown 

in Figure 6 (a). Due to the phosphorus as a donor element, this incorporation procedure is called 

n-type doping. In addition, p-type doping Si is achieved if a group III element, such as boron, is 

incorporated into Si (see in Figure 6 (b)). In order to increase in the hole density concentration, 

doping boron atoms, or in general p-type dopant elements are called acceptors.  
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Figure 6  The (a) n-type and (b) p-type impurity doping Si semiconductor materials. 

2.2 P-N Junctions 

The most common semiconductor devices consist of as a minimum of one p-n junction as 

part of the device. The p-n junction is the basic building block of devices like diodes and 

transistors. When p-type material (majority carriers are holes) directly contacts with n-type 

material (majority carriers are electrons), the devices are determined as a p-n junction which is 

shown in Figure 7. The n and p- regions are separated by an interface which is named the 

metallurgical interface. Initially, at this interface, the area contains a higher concentration of 

electron and hole. Majority carrier holes from the p-region will begin diffusing into n-region, and 

majority carrier electrons from the n-region will begin diffusing into the p-region. This 

transportation of charge carriers establishes the diffusion current in the p-n junction. Electrons are 

transported out from the n-region and holes transporting out from the p-region with the 

uncompensated charge of donor and acceptor ions respectively. This uncompensated charge 

produces an electric field named the built-in field for the operation of the p-n junction. The built-

in field happens in a region at the junction which is defined as the depletion region, due to the fact 

that it is now depleted of free electrons and holes, and a drift component of current is formed in 

the opposite direction to the diffusion current. The electric field continues to build up as 

equilibrium is reached, and the intrinsic current is zero. The Fermi energy level remains constant 
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throughout the system under the thermal equilibrium state. In the temperature at 0K, the maximum 

energy occupied by an electron is associated with the Fermi energy level. In Figure 8, the basic 

energy band diagram is shown for the p-n junction under equilibrium. The depletion region by an 

energy qVbi is revealed the bands bend, and this energy is defined as the built-in-potential. The 

following equation can express the built-in-voltage under thermal equilibrium: 

 

where NA and ND are the doping concentrations for acceptor (hole) and donor (electron), ni is the 

intrinsic carrier concentration, k is Boltzmann’s constant, and T is the absolute temperature. 

Applied voltage (VA) appears across the depletion region, forcing the separation of Fermi levels 

in the opposite direction, while the potential barrier decreases from Vbi to (Vbi-VA). If the diffusion 

and recombination process occurs the movements are shown that the majority of holes from the p-

region is drifted to the n-region and majority carrier for electrons from n-region is drifted to the p-

region. The potential offset is increased as the function of the VA when the reversed bias is applied 

on the p-n junction. In the semiconductor behavior, the potential offset is increased by reducing 

the number of majority carriers. It is believed to create a difficulty to the flow of charge carriers 

so that causing the minimal electric current to cross through the p-n junction.  Figure 9 shows the 

p-n junction under reverse bias. The following relationship gives the current diffusing through a 

p-n junction under forward or reverses bias: 

 

(1) 

(2) 
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where IS is the “reverse saturation current” and A is the “diode quality factor.” The values for A 

are generally between the range of 1 to 2. For A=1, the transportation of the current is dominated 

by diffusion while, as A=2 is dominated by recombination [33]. 

 
Figure 7  A p-n junction devices consist of p-type material (hole) and n-type material (free 

electron). 

 

 
Figure 8  The basic energy band diagram of the p-n junction under equilibrium state. 

 
Figure 9  The energy band diagram of the p-n junction under reverse bias. 
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2.3 Metal-Semiconductor Contacts 

         The metal-semiconductor (MS) contact is an essential element for the performance of 

common semiconductor devices. An MS junction is formed when a metal is brought in contact 

with a semiconductor.  MS contacts are categorized into two different types that are widely used 

in semiconductor devices:  

▪ Rectifying Schottky barriers.  

▪ Ohmic contacts. 

2.3.1 Schottky Barriers 

Before contacting metal and n-type semiconductor materials are defined for the basic 

energy band diagrams which are revealed in Figure 10. The vacuum energy level is called E0 and 

determines as the energy of a completely free electron. The work function ΦM is for metal material, 

and the ΦS is known as n or p-type semiconductor material. The band energy can change the 

location from the vacuum level to the Fermi energy level (EF) is defined for the work function of 

semiconductor material. When it comes to the given semiconductor materials, depending on 

different doping impurity level causes the various value of the work function. However, the 

location of the bands does not affect by the doping impurity, especially in the vacuum level. 

Another important value in the Schottky barrier is the parameter χ, which is called the electron 

affinity energy, and this value defines the location of the bottom of the conduction band to the 

vacuum energy. From Figure 10, the Fermi level of n-type material show a higher location than 

the metal materials, and it generally means the energy of electrons has more than the energy of 

electrons in the metal. Electrons will begin to diffuse from the semiconductor to the metal material 

until the Fermi energy levels of the two materials align with the same location, and the device 

becomes equilibrium after the metal directly contact with a semiconductor. The energy band 
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diagram of the device under an equilibrium state is shown in Figure 11. Electron is diffused from 

the semiconductor to the metal and establishes a depletion region at the semiconductor junction. 

The doping concentration can affect the various extent of band bending in the depletion region 

between the Fermi levels of the metal and semiconductor materials. The energy barrier is created 

by electrons moving from the semiconductor to the metal. In between the metal and the 

semiconductor is shown the transportation of electron that is defined as a different level of the 

barrier, ΦB is given by the variation between the metal Fermi level and the semiconductor electron 

affinity: 

ΦB = ΦM‐ χ 

where metal-semiconductor Schottky barrier band diagram under equilibrium is shown in Figure 

11. The number of electrons diffused from the metal to semiconductor so that the current in the 

metal-semiconductor junction can be anticipated. The Applied Voltage (VA) is given from the 

metal to the n-type materials, similar to the p-n junction. The metal-semiconductor is applied for 

forward and reverse bias, which is shown in Figure 12 (a) and (b). When the contact is applied for 

the forward bias (VA > 0), the energy barrier in the depletion layer is equal to q(Vbi-VA). Thus, due 

to the low of the barrier, the electrons can be able to transport from the semiconductor to the metal 

material. It results in the more current diffuse from metal to semiconductor under the forward bias 

voltage. However, the electron in the metal has the same exactly barrier (ΦB) as under the 

equilibrium state. In comparison, the height of the energy barrier intends to increase to q(Vbi+VA) 

when the VA is applied for reverse bias (VA < 0). Due to the height of the barrier, the amount of 

electrons is more difficult to transport into the metal. Due to the unchanged of ΦB barrier, the same 

amount of electrons diffuse from the metal to semiconductor under the forward bias case. The 

reverse current transfer from semiconductor to metal. 

(3) 
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Figure 10  The energy band diagrams of a metal and an n-type semiconductor before both 

come into contact. 

 

 
Figure 11  The energy band diagrams of a metal and an n-type semiconductor after contact. 

 
Figure 12  The metal-semiconductor contact (a) under forward and (b) reverse bias. 
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2.3.2 Ohmic Metal-Semiconductor Contacts 

As the work function of semiconductor is larger than that of the metal (ΦS> ΦM), the band 

diagram of metal and an n-type semiconductor is shown in Figure 13. If two materials contact 

together and form an ohmic metal-semiconductor, the electron will easily transfer from the metal 

to the n-type semiconductor. In the ohmic contact, the semiconductor interface shows more 

occupied electrons so that an electron concentration is typically higher than in the bulk region. The 

surface charge generates free electrons in the semiconductor. This behavior is different from the 

Schottky contact, where positive donor ions occupy the surface as a barrier and form the depletion 

region in the interface. Because of the ohmic contact, the depletion region has not appeared so the 

reduction of voltage across the metal-semiconductor junction can be ignored under any voltage 

bias. The transportation of electrons is shown in Figure 13, and the conduction band of the 

semiconductor gives the idea for no a barrier along with the metal. On the other hand, as the work 

function value of the metal is larger than the p-type semiconductor material (ΦM> ΦS), an ohmic 

contact can also be established between both materials. If metal materials with the desired work 

function to achieve ohmic contact are not available, different approaches have been utilized to 

achieve “pseudo-ohmic” contacts.  For example, The width of the depletion region can be reduced 

by heavily p-type doping for the material which creates a p+ region. It is a result that shows in 

Figure 14(a), due to the semiconductor under a negative voltage, the electrons can tunnel through 

the barrier from the metal. In comparison, Figure 14(b) shows the same behavior as the 

semiconductor is applied for the positive voltage. Electron in the semiconductor can be diffused 

as similar as ohmic contact devices. Therefore electrons can overcome the decreased barrier and 

proceed the tunneling effect through the barrier. 
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Figure 13  Band–diagram of an ohmic metal-semiconductor contact. 

 
Figure 14  The case where (a) negative and (b) positive voltage is applied to the 

semiconductor. 

 

2.4 Heterojunctions Semiconductor 

If the semiconductor material that forms the p-n junction is the same, this type of junction 

is determined as a homojunction. However, if two different semiconductor materials are used to 

form a junction, the junction is named as a heterojunction device. Figure 15 shows the energy band 

diagrams of an n and p-type semiconductors before contact. Egp and Egn are the bandgaps of n or 

p-type materials, Φn and Φp are the work function for each, and χn and χp are the electron affinities 

of n and p-type semiconductors respectively. ΔEv gives the variation of value between the two 

valence band energies, which is called valence band offset, and ΔEc gives the difference between 



www.manaraa.com

 

 

20 

 

the two conduction bands is defined as conduction band offset. The energy-band diagrams of an n 

and p-type heterojunction before contact is shown in Figure 15. When the Femi levels in both 

materials are aligned together, holes from the p-region and electrons from n-region have to diffuse 

across the junction in order to form a depletion area. The depletion region in each n and p 

semiconductors reveal different potential which is related to the value of built-in potential barriers 

on each side of the junction. The total built-in potential barrier is given by  

Vbi = Vbin + VbiP 

where the conduction (ΔEc) and valence (ΔEv) band offset value, in Figure 16 given by equations, 

5 and 6 respectively are relied on an ideal abrupt heterojunction. 

ΔEc = χP ‐ χn      

and 

ΔEg = Egp ‐ Egn = ΔEc + ΔEv      

where the ΔEg is equivalent to the difference of energy bandgap of p and n-type materials as similar 

as the values of the combination of ΔEc and ΔEv ideally, but for experimental process shows the 

different case due to the presence of interface states at the junction. 

 
Figure 15  The energy-band diagrams of an n and p-type heterojunction before contact. 
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Figure 16  The energy-band diagrams of an n and p-type heterojunction after contact. 

2.5 Solar Cells 

A solar cell is one of crucial electronic device which can directly convert from sunlight 

into electricity power by the effect of photovoltaic based on the conversion efficiency. Solar cells 

are designed by using different device configurations and employing single-crystalline, 

polycrystalline, or amorphous structures as the different forms of semiconductor materials. 

Chapin, Fuller, and Pearson, who developed the first p-n junction silicon solar cell in 1954 was an 

incredible finding in modern technology [34].  

2.5.1 Solar Spectrum 

From Table 2.1, the different intensity of solar radiation is shown the values which are 

defined as the solar constant at the average and given angles of the earth from the sun in the free 

space. For air mass zero (AM0), the solar constant is associated with the solar radiation outside 

the earth’s atmosphere; thus the value is utilized as a standard for satellite and space applications. 

As measuring data is taken from outside of earth which have generated the given accepted average 

value of 135.3 mW/cm2. On earth, at sea level with the sun at zenith, the intensity level is reduced 

to 100 mW/cm2 as the AM1 sun radiation from the energy of sunlight. AM1.5 is the adopted 

terrestrial standard used for comparison between different solar cells for terrestrial applications. 
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The given vertical angle (zenith) between the sun and atmosphere with the ratio of path length for 

the sunlight is calculated as Air Mass (AM) coefficient. The AM equation shows the relationship 

AM = (cosθ)-1 

where θ is the zenith angle, AM1.5 refers to a zenith angle of 48.2° which results in the value of 

83.2 mW/cm2. As the value is close to the maximum received at the earth’s surface with approx. 

100 mW/cm2 was defined as a standard AM1.5G.  The energy of absorption edge on a 

semiconductor in terms of wavelength can be attained from the relationship: 

𝜆 =
c

ν
 =  

h c

Eg
=

1.24

h ν
   µm 

where ν is the frequency in Hertz, c is the velocity of light in m/s, and hν is the photon energy in 

electron voltage (eV). Figure 17 shows a typical spectral response under illumination in ideal and 

practical Si solar cells.  

The energy-band diagram of a p-n heterojunction device is shown in Figure 18. After 

illumination for the device, light can penetrate through the wide-bandgap material (known as 

window layer) as photons have lower energy (hν) than Egn, in addition, the light will be absorbed 

in the narrow-bandgap material (known as absorber layer) due to photons with energies higher 

than Egp  respectively, and generating the free electron and hole pairs at the junction. Carriers 

created in the depletion region are readily collected due to the electric field, while those generated 

outside the depletion region must first diffuse to the depletion region before they collected and 

contributed to a  photocurrent. In heterojunction solar cells of this type, it is desirable that the 

window layer has significantly larger Eg than the absorber in order to allow photons of all 

wavelengths to reach the absorber. 

 

(8) 

(7) 
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Table 2.1  The intensity of solar radiation in free space.  

 

 
Figure 17  A typical spectral response under illumination by the sun in ideal and practical Si 

solar cells [35]. 

 
Figure 18  The energy-band diagram of a p-n heterojunction solar cells. 
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2.5.2 Solar Cell Parameters 

The most significant parameters of solar cells include the values of the short circuit current 

(ISC), open circuit voltage (VOC), fill factor (FF), and the energy conversion efficiency (η) which 

are utilized for evaluating performance. Figure 19 shows the I-V characteristics of a solar cell in 

the dark and after illumination for I-V curves. The total current is given by  

                                             

where Is, is the reverse saturation current, and IL is the light generated current. In the light I-V, the 

value is generated for the negative current, which points out that the solar cell can deliver 

electricity to a load. Thus, ISC is associated with the amount of current through the circuit when the 

open circuit voltage is equal to zero (V=0). In equation 9, result in Isc=IL. On the other hand, as 

short circuit current is equal to zero (I=0), from equation 10 is defined as the load is infinite and is 

given with relationship: 

 

From Figure 19, Imax and Vmax are the current and voltage are associated with the 

maximum power which can be generated by the solar cell. The maximum possible area of Pmax= 

Imax * Vmax for a given current-voltage curve determines the FF, which is given by the following 

relationship:  

 

The three parameters VOC, ISC, and FF are used for evaluating the conversion efficiency η for solar 

cells performance which is provided by the following expression 

(9) 

(10) 

(11) 
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where Pin, is the incident light power. The efficiency of a solar cell is influenced by series (Rs), 

and shunt (Rsh) resistance, as demonstrated in Figure 20 for the equivalent circuit of the solar cell. 

The series resistance is shown zero in the ideal solar cell, and the shunt resistance is defined as 

infinite. A finite shunt and series resistance characterizes all real solar cells. By using the series 

and shunt resistance as a calculation for equation 13 shows the relationship 

     

The value of series resistance is affected by the quality of contact and bulk of the device material.  

In addition, the decreased shunt resistance is attributed to the defect issue, including pinholes, grain 

boundaries, and other dislocations in the solar cell. A low shunt resistance leads to high leakage 

currents, which reduce the values of Voc and FF. Moreover, non-ohmic effects (such as non-ohmic 

contacts) can also reduce the FF due to roll-over in the I-V characteristics of solar cells. Hence, in 

order to improve the overall efficiency of solar cells, then the shunt resistance must be maximized, 

and the series resistance must be minimized. 

 
Figure 19  The I-V characteristics of a solar cell in the dark and under illumination. 

(12) 

(13) 
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Figure 20  The equivalent external circuit for a solar cell. 
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CHAPTER 3 

THE CDTE BASED THIN FILM SOLAR CELL 

3.1 Traditional Architecture – CdTe/CdS 

 The conventional device architecture is shown in Figure 21 for CdS/CdTe thin film solar 

cells. After a glass substrate deposits a transparent contact (TC) on the top of it, the deposition of 

window layer, absorber (CdTe), and the back contact are fabricated by different deposition 

techniques. 

Back contact 
   

CdTe absorber layer 

window layer In 

Transparent contact (TC) 

Glass substrate (7059) 

 

 

 

                                                     Light 

Figure 21  CdTe/CdS traditional architecture solar cell. 

3.2 Transparent Glass Substrate 

According to the literature survey, CdTe solar cells have been developed and fabricated in 

the high substrate temperatures (~580 °C) by Close Spaced Sublimation (CSS) for the highest 

efficiencies [36]. Alkali-free glass (Corning Eagle X2000) is often used in research as it can be 

tolerant for these high temperatures fabrication processes, and remain high optical transparency.  
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Nevertheless, in manufacturing fab, soda lime glass (TEC 10, etc) is preferred due to the material’s 

low price.  

3.3 Transparent Contacting Oxides (TCOs) 

Thin film solar cells are required to have transparent semiconductor materials as front 

contact.  Since most of these are oxides, they are referred to as transparent conducting oxides.  In 

order to form an ohmic contact with the CdS layer at the junction, the transparent oxide contact 

needs to remain the electron affinity around 4.5eV. However, as the electron affinity of the TCO 

is higher than the CdS (4.5eV), a Schottky contact can form. TCO’s are heavily doped 

(degenerate), and their Fermi energy is near their conduction band. 

TCO is deposited as a front contact have to follow several vital characteristics below: 

▪ Resistivity is lower than 10-4 Ω cm. 

▪ Higher transmission in the wavelength between 300-900 nm. 

▪ During high-temperature fabrication need to remain chemical stability. 

TCO materials typically act like insulators due to the wide optical bandgaps property as 

the materials are intrinsic, stoichiometric, and undoped TCO. By harnessing the extrinsic doping, 

the higher conductivity of the TCO can be anticipated. Due to the donor impurities in the oxide, 

the substitution of valence cations for the materials can increase the n-type TCO conductivity by 

improving the electron concentration. Fluorine doped tin-oxide SnO2: F (FTO), tin-doped indium 

oxide In2O3:Sn (ITO) and cadmium stannate Cd2SnO4 (CTO) are frequently used as TCO’s for 

CdTe solar cells. As the formation of oxygen vacancies act as native defects, the most common 

TCO materials have a tendency to be an n-type semiconductor. The transmission and resistivity 

are shown in Table 3.1 for the most favorable TCO materials. The decent optical transparency 

approx. 85% and excellent n-type conductivity are revealed as metallic oxides. In the recent 
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research, utilization of bi-layer TCO/buffer layer can improve the efficiency of the solar cell that 

the TCO has to comprise of a higher conductivity following by a higher resistivity transparent 

oxide (HRT) as a buffer layer [37]. As the possible solar cells devices have the window layer as 

CdS layers, the use of HRT as a buffer layer leads to enhance considerably for maintaining decent 

FF and Voc. The intention of utilizing the HRT as a buffer is suggested to act as a high bandgap 

extension of the thinner CdS and alleviating the crystal mismatch between TCO and CdS layer 

[38]. The HRT also can prevent shunting effect and current leakage between TCO/CdS due to 

high- ρ layer as an insulator. 

Table 3.1   The characteristics of transparent conducting oxides and buffer layers. 

Material Resistivity (Ω-cm) Transparency (%) 

SnO2 8 x 10-4 80 

SnO2:F 3x 10-4 84 

In2O3:Sn 2 x 10-4 85 

Cd2SnO4 1 x 10-4 92 

 

3.3.1 Fluorine Doped Tin Oxide (SnO2:F) 

SnO2 (TO) is a promising material used as common transparent oxides. TO films are 

typically deposited by Chemical Vapor Deposition and R.F sputtering [39, 40]. The gas or liquid 

precursors are used as reactants supply in the deposition chamber, and a film is deposited on the 

substrates during CVD fabrication process. The common use of inorganic and metal-organic as 

precursors materials include tin tetrachloride (SnCl4), dimethyl tin dichloride ((CH3)2SnCl2), 

tetramethylene (Sn(CH3)4), and oxygen (O2) [41].  As well known, the substitution of Oxygen-

vacancies can primarily define the values of n-type conductivity; however, the TO films is not 
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suitable for use as front TCO’s on thin film solar cells due to its high resistivity in the electronic 

property. When the TO films use the precursors containing HF (hydrogen-fluoride) acid, the 

conductivity can be significantly improved. In order to obtain higher conductivity, TO film can be 

extrinsically doped with fluorine in the CVD fabrication process. 

FTO films can also be formed by R.F sputtering technique, which has the process of  CHF3 

in the range 1-10% concerning the total Ar + CHF3 pressure during the deposition. The excellent 

resistivity can approach approximately 4 x 10-4 Ω-cm by using R.F sputtering. 

3.3.2 Tin Doped Indium Oxide (ITO)  

One of the accessible materials is Indium tin oxide (ITO), which can be deposited by 

numerous techniques such as D.C and R.F sputtering, chemical vapor deposition, and vacuum 

evaporation. ITO act as front contact oxide for CdTe thin film solar cell. The substitution of the 

indium ion tends to provide an additional electron to form n-type doping in the conduction band 

by using Tin as a cationic dopant in the In2O3 lattice. The highest resistivities are reported by 

R.B.H. Tahr et al. as lower as 2x 10-4 Ω-cm, which are deposited by utilizing R.F sputtering process 

[42]. 

The R.F sputtering process is reported by N. Romeo et al. that the different stoichiometries 

are depended on different preparing targets [43]. In2O3 containing 1, 2, 4, and 10% weight of SnO2 

was utilized. Depositions proceeded by using various ambient environments. By incorporation of 

mixing gas Ar + O2 ambient during the process, the ITO films were deposited with the two different 

Oxygen and hydrogen each partial pressures under 3-30% and 1.5-15%, respectively. The most 

ITO films remain extremely low resistivity approx. <  2 x 10-4 Ω-cm. Due to the low activation 

energy of tin for n-type doping, it is suggested that ambient gas and the different stoichiometry of 
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targets did not affect the conductivity of the films overall, and the doping level does not define by 

oxygen vacancies as well. 

3.4 The Cadmium Sulfide (CdS) Layer 

The conventional CdS/CdTe thin film solar cell commonly use the CdS material as a 

window layer. Thus, CdS acts as n-type materials in order to form a p-n junction following by p-

type CdTe. The light allows penetrating to CdS layer between the visible solar spectrum (> 

500nm), due to an energy bandgap of CdS (2.42eV). 

The short circuit current (Jsc) shows the maximum theoretical data up to 26 mA/cm2 in the 

best traditional CdS/CdTe solar cells. In the downside, the CdS layer cause absorption in the short 

wavelength, which is equivalent of approx. 8 mA/cm2 under AM1.5 illumination [44]. Thus, the 

significant reduction of the solar spectrum appears below the 510nm, this wavelength that is 

corresponded to the actual energy bandgap for CdS material. The most of photo-generated carriers 

in this layer are not effectively formed the photocurrent, due to low hole lifetime, and high 

recombination center. Thus, the window loss is expected to find in the wavelength range from 300 

to 510 nm. The promising approach is to reduce the thickness of the CdS layer as lower as possible 

for alleviating the window losses. The quality performance of fabrication process maintain the 

uniform and non-particle film to prevent the formation of pinholes at the junction of the device, so 

it is believed in eliminating the shunting effect by establishing the parallel junction between TCO 

and CdTe. Chemical bath deposition (CBD) and Close Spaced Sublimation (CSS) [45], are the 

most promising deposition techniques for thinner (<100nm) uniform CdS layers to reduce the 

window lost in the solar spectrum.  

The lattice mismatch between CdS and CdTe is ~9%, which can lead to the formation if 

the high concentration of interface states at the interface. The formation of an interfacial layer 
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CdTe1-xSx layer (Te-rich alloy) is contributed to creating high quality and efficient CdS/CdTe 

junctions. The effect of  CdS1-xTex alloy (S-rich) has been discussed in the following session of 

post-annealing CdCl2 treatment [46]. The main reason for having high efficiency devices can 

reduce the interfacial defect density between CdS/CdTe [47]. There are numerous deposition 

techniques for the deposition of CdS layer such as Chemical Bath Deposition (CBD) [48], Close 

Spaced Sublimation (CSS) [49], and R.F sputtering [50]. 

3.4.1 CdS via Chemical Bath Deposition (CBD) 

The most common reason is suggested to use the CBD process, due to low manufacturing 

price for depositing CdS which is fabricated to achieve a decent quality of CdS layer in higher 

conversion efficiency CdS/CdTe solar cells. The CBD process includes cadmium acetate is used 

as cadmium source. Thiourea is utilized as a sulfur source, ammonium acetate (NH4AC) and 

ammonium hydroxide (NH4OH) are used as buffers to maintain the PH value. The SnO2: F or ITO 

coated glass substrates are immersed in DI water, and it is important to remove bubbles on the 

surface during the deposition process, which should completely maintain the substrate face up. 

The temperature needs to be controlled between 75-95 °C during the CBD process. The thickness 

of CdS can be tuned by various deposition time. J. Herrero et al. [51] proposed the possible 

reactions as follows: 

Cd(CH3COO)2↔Cd2++2CH3COO- 

NH3+HOH↔NH4
++OH- 

Cd(NH3)4
2+ +2OH-↔ [Cd(OH)2(NH3)2]+2NH3 

[Cd(OH)2(NH3)2]+SC(NH2)2→ [Cd(OH)2(NH3)2SC(NH2)2 

[Cd(OH)2(NH3)2SC(NH2)2]→CdS(S)+CN3H5+NH3+2HOH 
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It is known that the as-deposited CdS layer is expected to consist of two different types of 

crystalline structures, which are the cubic and the hexagonal, respectively. The post-annealing or 

following fabrication annealing process at the temperatures around 500°C allows the CdS film 

which is deposited by CBD to increase the preferential percentage of hexagonal crystal orientation. 

It is believed to give higher stability than the cubic structure. 

                            
Figure 22 The diagram of Close Spaced Sublimation (CSS) system. 

3.4.2 CdS via Close-Spaced Sublimation (CSS) 

 From Figure 22, Close Spaced Sublimation (CSS) is utilized for depositing the CdS film 

to maintain precise thicknesses, and the process is based on the reversible dissociation of CdS 

under higher thermal temperatures. The CSS for the methodology of the process is reported by D. 

Marinskiy et al. [52], and the CdS powder can be dissociated and recombined on the substrate to 

generate the CdS film, thus understanding the effect of the CSS CdS can provide the better 

performance on the CdS/CdTe solar cells. The CdS layer, which is fabricated by the CSS method, 

were reported the highest conversion efficiency of samples up to 15%. CdS layer was deposited in 

the ambient environment of He and partial pressures of He and O2 during the fabrication process 

on the samples. Increased the partial pressure in the oxygen ambient was reported a lacking of 

sulfur vacancies, and it is believed to be the result of incorporating O2 in the CdS film. In order to 
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improve the performance of solar devices, the CdS film should proceed under post-annealing 

treatment. 

3.5 The Cadmium Telluride (CdTe) layer 

 Cadmium telluride is one of the essential II-IV semiconductors which contain excellent 

electronic and optical properties for acting as an ideal active or absorber layer in the thin film solar 

cells. To understand the effect of the bandgap of materials, the theoretical efficiency-bandgap 

relationship shows in Figure 23. The maximum efficiency corresponds to the bandgap of 1.45 to 

1.5 eV. When the CdTe act as absorber layer due to the ideal bandgap of 1.45ev, the solar cell 

conversion efficiency can be effectively maximized. CdTe is a direct bandgap material with a high 

absorption coefficient > 5×104 cm-1. Due to this high absorption coefficient, the CdTe only need a 

few micrometers (approx. 2μm) of material is sufficient to absorb the entire incident light. 

 
Figure 23  The relationship between theoretical efficiency and energy bandgap (under AM 

1.5G). 

 

Due to the deposition process in different condition and method, the CdTe can proceed 

with the intrinsic doping by both cadmium or tellurium vacancies as crucial defect states. Both 

important defect state exhibit different electronic behavior in the CdTe film, thus, firstly, the 
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Cadmium vacancies are shown p-type conductivity for hole density, on the other hand, the 

tellurium vacancies lead the film to exhibit the n-type conductivity. The most popular deposition 

techniques for forming polycrystalline CdTe films are sputtering [53], electrodeposition [54], 

chemical vapor deposition (CVD) [55], vapor transport deposition (VTD) [56], and close-spaced 

sublimation (CSS) [57][58]. 

3.5.1 CdTe via Close-Spaced Sublimation (CSS) 

The CSS process generally based on the element of reversible dissociation for CdTe under 

higher source temperature during the fabrication. The process of dissociation for the material 

express: 

2CdTe(s) ↔ 2 Cd(g) + Te2(g) 

which recombine on the substrate surface to form the CdTe film. 

 The lattice mismatch between the CdS and CdTe is 9.7%, which leads to interface defects 

that can reduce the photocurrent. The formation of the CdSxTe1-x layer during the high 

temperatures utilized by the CSS method improves the quality of the junction by reducing the 

concentration of recombination centers at the interface. C.S. Ferekides al. has reported the 

advantage of utilizing the CSS method for deposition of high-quality CdTe film, and the film 

provides significant large crystalline grain size which indicates a lower defect density and small 

grain boundary [59]. In the comparison of other methods, the physical vapor deposition and 

sputtering yields much small grains structure. The incorporation of oxygen-containing ambient 

allows producing decent crystalline and characteristic properties for CdTe films in different 

research developments. The presence of oxygen exhibits the better electronic-optical properties of 

p-type CdTe, and due to the reduction of deposition rate, the grain size remains small which is 

contributed to creating a high density of the film with reduction of possible pinhole [60]. 
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3.5.2 CdTe via R.F. Sputtering Deposition 

The CSS technique has been favored by several groups due to its high deposition rates, 

relatively large grains, and overall quality of the films.  Sputtering has also been a popular process 

due to its potential for large area deposition. CdTe thin films were grown by R.F. sputtering in an 

Ar+N2 ambient. Using N2 partial pressure (~1%) as a substrate temperature at 350 °C with using 

an R.F. voltage of 1200 V, R.F. power density of about 5 W cm-2, and a bias applied to the substrate 

of the order of 10% of the R.F. voltage, the resistivity of p-type CdTe film exhibits as low as 9 Ω-

cm [61]. 

3.6 CdCl2 Heat Treatment (HT) 

The high efficiency CdTe solar cells required a significant step of the process which is 

called the CdCl2 heat treatment (HT), it is believed to be an important foundation in the fabrication 

of devices. CdCl2 treatment is fabricated by the thermal evaporation and numerous methods on the 

CdTe surface following the post-annealing process under He+O2 ambient. The post-annealing 

temperatures are in the range of 350 to 400 °C for fixed 25 mins, and it is following by the process 

of ultra-sonicated clean in methanol to remove residual CdCl2. 

The effect of Cl element distribution in the polycrystalline CdTe film has been 

continuously investigated. The significant effects of CdCl2 treatment have been exhibited with: (a) 

improvement of the CdS/CdTe interface by promoting inter-diffusion process between CdTe and 

CdS [62], (b) gain the larger grains size with recrystallization [63], (c) increased carrier collection 

in the long wavelength [64], and (d) passivation of GBs and deep defects to increase the minority 

carrier lifetime [65]. The elemental distribution of Cl in the CdTe films exhibited mostly 

segregated at grain boundaries; thus the only a small portion of Cl (on the order of 1016 -1017 cm-

3) diffusing into the grain interior has been widely investigated [66]. 
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The interdiffusion of S and Te near the CdTe/CdS junction [67] as a result of the CdCl2 

HT improves the electronic properties of the CdS/CdTe junction [68] by reducing interface 

recombination.  Figure 24 depicts the before and after device structure with sulfur (S) diffusing 

into the CdTe layer and creating a CdTe1-xSx layer (Te-rich alloy), which leads to the reduction of 

bandgap in CdTe layer and increases carrier collection in the long wavelengths. In addition, the 

Te diffusion into CdS forms CdTeySe1-y (S-rich alloy), which is photo inactive and highly 

defective. 

The presence of oxygen during the CdCl2 treatment improves the performance of the 

CdS/CdTe solar cell (as compared to using inert ambient), and it is believed to increase the 

additional p-type hole density due to the formation of shallow-acceptors defects [69].  On the other 

hand, owing to the passivation of Cl into grain boundary regions, the CdTe become more p-type, 

which is subjected to increase photo-carrier collection efficiency and lifetime by incorporation of 

chlorine and oxygen into the GBs [70]. 

 

Figure 24  Inter-diffusion of S and Te near the CdTe/CdS junction after CdCl2 HT. 

3.7 Back Contact  

 One of the challenging aspects of the  CdTe solar cells forms a decent ohmic contact 

between p-type CdTe and back contact (BC). The main reason exhibits that the combination of 

high electron affinity (4.5 eV) and a large band gap (1.45eV) to produce extreme high work 
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function, which is around 5.8eV. From metal-semiconductor theory, in order to form an ohmic 

contact at the junction, the work function of the metal must be higher than the work function of 

the p-type CdTe (5.8 eV). However, it is difficult to find any of the metal materials which match 

completely the prerequisite. The formation of Schottky barriers junction is exhibited by utilizing 

the lower work function metal materials (< 5.8eV). The formation of back contact barriers or offset 

cause the obstacle to transport hole out, and the effect is revealed in the current-voltage 

characteristics of the solar cell. 

Two distinguished methods are designed for forming “pseudo-ohmic contacts,” owing to 

the difficulty in doping p+ polycrystalline CdTe. Firstly, a Te-rich layer is formed by the surface 

treatment of CdTe for producing a p+-surface, followed by the deposition of a metallic contacting 

material. In the second design of process, additional or buffer layer of material has desirable 

valence band with CdTe, which can be fabricated the pseudo-ohmic contacts. From the research 

investigation, some of the buffer layers are favorable to dope heavily for p-type at the interface 

with the metal contact. 

3.7.1 CdTe Surface Treatment 

The surface treatment for CdTe is prior to the formation of back contact, and the process 

must be adapted as mentioned above. The two achievements can be accomplished by the surface 

treatment (etching) of the CdTe surface. The priority of surface treatment is to remove the 

contamination or oxides from the CdTe surface, which is believed to be formed during the CdCl2 

heat treatment. Secondly, it provides a Te-rich film. The surface treatment has been distinguished 

by each wet or dry chemical etching process based on the use of the medium. According to the dry 

etching mechanism, it is general methods to utilized for etching processes such as physical 
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sputtering, reactive ion etching, and plasma etching. Considering the process cost, the wet 

chemical etching has been popularly utilized for surface treatment in the CdTe surface [71]. 

The most promising solutions utilized for wet etching, which are Br2/methanol solutions 

(BM) [72], aqueous nitric acid/phosphoric acid mixtures (NP) [73] and chromate etches 

(K2Cr2O7:H2SO4) [74].  

3.7.2 The Role of Copper in the Formation of the Back Contact 

The Cu containing back contact is favorably adapted to use for all high efficiency CdTe 

solar cells. Two possible defects can be formed either a substitutional defect (CuCd) or an interstitial 

defect (Cui) by doping Cu into the CdTe layer, respectively. Cui is a shallow donor (0.01eV) while 

CuCd is a deeper acceptor level (0.15 - 0.34 eV) [75]. The mobility of interstitial Cu is very high 

and therefore minimizing the formation of interstitial Cu can minimize transient effects and 

degradation issues. Although native defects such as VCd are acceptors, CuCd acceptor defects result 

in higher doping due to their lower activation energy [76]. In order to form the p+ CdTe back 

contact surface (during the back contact annealing process), the one of acceptor defect (CuCd) can 

achieve this, and due to the p+ channel, it will assist the tunneling effect in establishing an ohmic 

back between CdTe and BC. The great controlled amount of Cu doping also has been reported for 

the record-breaking world efficiency on the CdTe thin film devices [77]. As the CdTe layer is 

over-diffused by Cu back contact after the annealing process, this effect contributes to the 

instability and degradation of performance in the traditional CdS/CdTe cells. Summary of the 

defect analysis, the performance has been degraded due to the interstitial Cu (Cui), which diffuses 

fast and easily accumulate at the junction of CdS/CdTe. The study of excessive Cu diffusion cause 

to compensate for the shallow donor levels with deep acceptors in CdS, and this has been reported 

by Asher et al. [78]. However, using the suitable amount of Cu diffusion in the interface has been 
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introduced by the researcher at USF, and also exhibits the presence of Cu on the CdS surface can 

possibly improve the device performance [79].  

3.7.3 Cu Doped Graphite Paste 

 It is one of the critical methods to achieve the highest conversion efficiency of CdS/CdTe 

cells, and the Cu doped graphite paste as back contact has been reported [80]. Prior to the 

fabrication of back contact, the surface treatment of CdTe can form a Te-rich condition in the 

surface. Cu doped graphite paste is made by a mixture of HgTe: Cu and the contact process 

followed by low-temperature annealing (250-275 °C) to let the Cu diffusion into the absorber layer.  

It is suggested that the tunneling effect for ohmic contact can be achieved by the formation of 

highly p-doped layers of Cu2Te and Hg1-xCdxTe with annealing the Cu doped graphite paste [81]. 

3.7.4 The Issues of Cu Doped Back Contact 

 Cu is known to play a significant role in improving the performance of CdTe solar cells. 

However, Cu is also known to have adverse effects on device performance. Firstly, the 

uncontrolled Cu doping also causes the reduction of stability in the cells under stress [82]. 

Secondly, p-type CuCd defect will be compensated by a shallow donor level, which is Cui. It is 

believed to cause by excessive Cu doping. The higher Cu doping with rapid diffusion into CdTe 

is also contributed to degrading the performance of the solar cell, due to the deep donor defect for 

increased recombination centers – i.e., reducing the minority carrier lifetime - and shunt paths at 

the CdTe/CdS junction. Besides, the enormous back-contact barrier may be formed due to the 

excess Cu depletion from the back contact that results in the production of a roll-over in the J-V 

characteristics of the solar cell [83]. The increased thickness of the Cu layer is detrimental for both 

series and shunt resistances in the J-V measurements; the shunt resistance decreased due to the 



www.manaraa.com

 

 

41 

 

shunt paths formed by the excess Cu. Thus, the amount of Cu has to be optimized to achieve the 

best device performance and stability. 

3.8 New Device Architecture: Glass/MZO/CST/CdTe       

The performance of thin-film CdTe solar cells has increased significantly during recent 

years and now exceeds 22 % [1]. Some of the performance improvements were due to the use of 

CdSexTe1-x alloys as absorber layers (CST/CdTe) [84]. The current high efficiency CdTe cell 

architecture is typical:  SnO2:F/MZO/CST/CdTe/Back electrode, as shown in Figure 25.   

 
Figure 25 The new configuration of MZO/CST/CdTe for solar cells architecture.  

 

3.8.1 The Magnesium Zinc Oxide (MZO) Layer    

The different type of electronic and optical semiconductor devices, including solar cell, 

laser diodes, and transistor, etc. have been fabricated by the wide energy bandgap of group II-VI 

semiconductor materials. One of the accessible materials is zinc oxide (ZnO), which has optical 

near 3.3eV and high transparency. It is known to commonly utilize to apply as a window layer in 

the thin film solar cells [85]. The wide band gap (3.3 eV) and an enormous excitation binding 

energy (60 mV) of ZnO heterostructure devices, synthesis of ternary MgxZn1-xO alloys has been 

reported, which has the band gap wider than ZnO [86]. MgxZn1-xO films are considered as a 

promising material for several optical applications due to its high excitation binding energy and 

wide tunable band gap [87]. Due to these added advantages, MgxZn1-xO is suggested to be a 
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promising material for the production of PV technologies and has been massively investigated. In 

recent studies, incorporation of various Mg compositions with ZnO can tune the location of the 

conduction band and modify the bandgap alignment with p-type semiconductors, especially in 

CdTe based solar cells [88]. Also, due to the optimization of band alignment as “spike” between 

MgxZn1-xO and CdTe is proven to decrease the interfacial recombination velocity for improving 

the minority carrier lifetime. Various Mg compositions can synthesize the MgxZn1-xO layers which 

are generally deposited by using R.F. co-sputtering at room temperature. The fabrication of MZO 

offers very flexibly and controllable in compositions. A possibility of preparing an MgxZn1-xO film 

of the required features may provide the idea to improve the performance of optoelectronic 

devices.                                                         

3.8.2 The Cadmium Selenium Telluride (CST) Layer                                                                                                                                  

Geisthardt et al. are shown the potential characterization in CdTe technology, which can 

be used to analyze the performance limit in the real experimental condition [89]. The numerous 

simulations have been reflected that the reduction of bandgap in CdTe materials from 1.45 to 

1.36eV, the photo-current would be generated enormously and suggested to compensate for the 

degradation of voltage that results in increasing efficiency. In order to reduce the bandgap of CdTe 

to 1.36eV [90], the incorporation of selenium can produce the various Se composition of CdSexTe1-

x alloys, which is followed by the bowing effect [91]. Paudel and Yan et al. exhibited that the CST 

alloys can be fabricated in the process of inter-diffusion between CdSe, which is deposited by 

sputtering and CdTe layer during the CdCl2 post-annealing process [92]. The formation of CST 

alloys based on the reduction of bandgap, which resulted in the increased current collection in the 

long wavelengths. The inter-diffusion process can control the amount of selenium alloying with 

CdTe that was dependent on the thicknesses of CdSe. Due to the bandgap of CdSe (1.7eV), the 
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residual CdSe believes in producing poor cell performance, and the window loss in the carrier 

collection, thus it is important to fully diffuse the sputtered CdSe layer into CdTe to form CST 

alloys. However, this fabrication process shows that the CST alloys are difficult to form a uniform 

and homogeneous single bandgap below 1.45eV. On the other hand, the new method exhibited 

that the single deposition of CdSeTe alloys can be well controllable over the selenium alloying. 

As-deposited single bandgap CdSeTe alloys have been characterized to analyze the effect of 

selenium composition on the new CdTe device. Finally, the single bandgap CdSeTe alloy will be 

deposited at the front of a CdTe cell to assess increased current collection at longer wavelengths 

similar to the sputtered CdSe method [93].  
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CHAPTER 4 

EXPERIMENTAL MEASUREMENT AND PROCESS 

4.1 Device Measurement 

In semiconductor research, materials are characterized by multiple techniques to analyze 

the morphology, topography, electrical, and optical properties in order to understand their impact 

on devices. Understanding the importance of material properties and their impact on device 

performance is critical in improving device operation, and in the case of solar cells conversion 

efficiency.  In this work, the techniques described below were utilized for characterizing material 

and device properties. 

4.1.1 X-Ray Diffraction (XRD)   

 X-ray powder diffraction (XRD) is the most common characteristic technique primarily 

utilized for identifying the phase of a crystalline material and can provide analytical information 

on unit crystal cell dimensions [94]. The XRD data which show relatively crystalline orientation 

peaks over as 2θ range of 20–80° were collected using a Rigaku X-ray diffractometer with CuKα 

radiation of wavelength 1.54056 Å. The following Bragg diffraction equation calculates the 

orientation peaks: 

2dsin θ =nλ 

where n is a positive integer and λ is the wavelength of the incident wave. For a crystalline solid, 

the waves are scattered from lattice planes separated by the interplanar distance d: 

𝑑 =
𝑎

√ℎ2 + 𝑘2 + ℓ2
 

(14) 

(15) 
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where a is the lattice spacing of the cubic crystal, and h, k, and ℓ are the Miller indices of the Bragg 

plane. 

 XRD was used to study as-deposited and annealed films to understand the effect of heat 

treatments.  It was also used to calculate the composition of ternary alloys, such as MZO and CST 

by calculating the lattice constant. 

4.1.2 Scanning Electron Microscopy (SEM)   

  Scanning electron microscope (SEM) is a type of electron microscope with beam energy 

around 20-30k eV that generates images of a sample via scanning the surface with a focused 

electron beam. The electrons interact with atoms in the sample, offering various signals that 

provide information about the surface topography and composition of the elements [95].  For this 

study, a Hitachi 800, etc. were used. 

SEM was used to understand the growth dynamics of the CST CSS deposition, understand 

the extent of grain growth during the CdCl2 HT, etc. 

4.1.3 Transmission Electron Microscopy (TEM)  

In this dissertation, MZO/CST/CdTe solar cells were utilized the High-Resolution 

Transmission Electron Microscopy (HRTEM) to characterize the cross-section materials structure. 

Prior to the TEM measurement, the samples require the preparation of Focused Ion Beam (FIB) 

milling by using a dual beam FEI Nova 600 Nanolab. A standard in-situ lift-out process was 

utilized to make the cross-section samples through the film bulk into the glass substrate. A 

platinum overlay was deposited on the top of the film to define the area of interest on the surface 

of the sample, homogenize the final thinning of the samples and to prevent damage to the CST or 

CdTe film surface from the ion beam. STEM bright-field images and high-resolution TEM images 

were collected using an FEI Tecnai F20 (S) TEM operating at 200 kV [96]. 
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The TEM cross-section images are shown both of CdSe/CdTe and CST/CdTe solar cells 

structures and lead to understanding the grain structure and element distribution of the cell devices.  

4.1.4 Time-Resolved Photoluminescence (TRPL) 

The time-resolved photoluminescence (TRPL) was also utilized to characterize 

recombination in thin films of CdTe and/or CST and determine an effective minority carrier 

lifetime.  Time-Resolved Photoluminescence (TRPL) was obtained with excitation at 640 nm with 

0.3 ps pulses at 1.1 MHz, and PL was measured with 10nm bandpass filter with the center at 820 

nm.  TRPL is a contactless method to characterize recombination and transport in photovoltaic 

materials. The strengths and weaknesses of the technique have been described elsewhere [97]. 

For this work, the study of MZO as a window layer and CST as absorber layer are 

significant to increase the minority carrier lifetime due to the improvement of the recombination 

center. Thus, the TRPL data are defined as the lifetime in the various excitation energies on the 

cells.  

4.1.5 Capacitance-Voltage Profiling 

The C-V catheterization technique is the most common electric measurement of the 

depletion region capacitance of semiconductor junctions including p-n junctions, metal-

semiconductor junctions, and metal-oxide-semiconductor (MOS) structures without damaging the 

samples, in comparison of other semiconductor profiling techniques such as Hall effect, SIMS, 

etc. The rapid analysis and non-destructive character define the C-V measurement with excellent 

usage in the semiconductor industry. The C-V (capacitance versus voltage) measurement provides 

the method to calculate the doping profile of semiconductor devices, which is done using an 

asymmetric semiconductor junction [98]. The CV measurements were performed using an HP 

4194A impedance/gain-phase analyzer. 
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CdTe and CST solar cells were characterized using CV to understand the effect of Se 

composition Cu annealing temperature etc. on the net doping in the absorber films.  

4.1.6 I-V Measurement 

I-V measurements are essential in characterizing junctions such as solar cells.  When 

performed under light, one can obtain the four important output parameters of the solar cell, VOC, 

JSC, FF, and efficiency. Calibrated Solar Simulators are used to simulate the solar spectrum; 

depending on the optics and light sources, various air mass conditions can be simulated, including 

AM1.5G, which is used for characterizing solar cells for terrestrial applications. Dark IV 

measurements can be used to evaluate the quality of the junctions/solar cells by extract in 

parameters such as diode factors, reverse saturation currents series and shunt resistances, etc. 

A four-point probe set up to mitigate contact resistance was used with a Keithley 2410 

Source meter, and the current output was measured as the voltage bias was swept. The data was 

collected using a LabVIEW program, and the VOC and FF of the devices were calculated. In 

addition, I-V measurement is simulated by WxAMPS software for the different type of 

superstructure configuration devices as well. 

4.1.7 Spectral Response  

The spectral response (SR) of the solar cells was measured using an Oriel monochromator 

(model 74100). A GE400w/120v Quartz Line lamp (model 43707) was used as a light source. The 

light intensity was measured using a reference silicon solar cell calibrated by the National 

Renewable Energy Laboratory (NREL). The following equation calculates the quantum efficiency: 

 

SR data and the AM1.5G standard tables were used to calculate the JSC of solar cells. 

(16) 
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4.1.8 Deep Level Transient Spectroscopy (DLTS) 

DLTS measurements were characterized with a Sula Technologies Deep Level 

Spectrometer. The sample temperature was changed from 120 K to 300 K using liquid N2 and a 

heater inside a Janis VPF-100 cryostat. The DLTS measurements were conducted under a bias 

pulse of -1 to 0 V with a pulse width of 1ms. The resulting capacitance transients were analyzed 

with 6 different rate windows from 0.02 to 1 ms. During the DLTS measurement, the capacitance 

transient of a reverse biased p+n or n+p junction due to charge carrier injection is measured. The 

following equation gives the capacitance transient, 

 

where C(t) is the instantaneous capacitance, C0 is the reverse bias background capacitance, NT is 

the trap concentration, ND is the doping concentration, and τ is the carrier lifetime [99]. 

4.2 Experimental Process 

The MZO/CST/CdTe cells discussed in this paper are of the superstrate configuration and 

were fabricated on Corning EagleXG glass. ITO was deposited by sputtering, and its sheet 

resistance was approx. ~ 8 /.  MZO was also deposited by sputtering was used as the emitter 

layer.  Following the deposition of MZO, a CdS layer was deposited by CSS with thickness in the 

range of 100-200 Å. The CST alloys were deposited to approx. 1 µm thickness, followed by CdTe 

also by CSS to a thickness of 3-4 µm. After the CdTe deposition, the devices were CdCl2 heat 

treated. The CdCl2 HT was carried out on He:O2 ambient at temperatures in the range of 410 – 440 

℃.  Prior to the formation of the back contact, the CdTe surface was etched in a bromine-methanol 

solution. The back contact was Cu-doped graphite. 

 

(17) 
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4.2.1 MgxZn1-xO by Co-R.F. Sputtering          

The MgxZn1-xO thin films were formed by using the RF co-sputtering with ZnO (99.99 %) 

and MgO (99.99 %) targets simultaneously. In the sputtering system, each of the targets was the 

diameter of 3 inches and had been set up in a distance of around  25cm far from the substrate 

during the deposition. The substrate was rotated during the sputtering to enhance the uniformity 

of MZO film and was performed at room temperature and various partial pressure Ar+O2. From 

Table 4.1, the Mg compositions of MZO are defined by the varied sputtering powers applied to 

each target to control the deposition rate, and ZnO and MgO targets were conducted sputtering 

simultaneously by opening the shutters. The applied sputtering power to each target was different 

formation 0 to 180 W. The MgxZn1-xO films (0≦x≦0.5) were deposited on fused glass substrates 

at room temperature in 5 X 10-3 torr of 10 % oxygen mixed with Argon [100]. The chemical 

composition ratios of MgxZn1-xO were determined by Energy Dispersive X-ray Spectroscopy 

(EDS). The phase and crystallographic structure were characterized by X-ray diffraction (XRD) 

operated at 45 kV and 40mA using Cu Kα radiation. The optical transmission was recorded on a 

sphere scanning spectrometer at a wavelength from 400 to 1200 nm. The band gap energies were 

derived from a plot of (αhν)2 as a function of photon energy (hν). The resistivity was measured 

using the four-point probes measurement. 

Table 4.1  Sputtering power of MgO and ZnO respectively by using RF co-sputtering. 

 

Mg compositions MgO power (W) ZnO Power (W) 

0 0 100 

0.15 110 100 

0.23 120 100 

0.3 135 100 

0.4 160 100 

0.5 180 100 
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4.2.2 Formation of CdSexTe1-x by Inter-Diffusion    

CdSe has been recently used for the fabrication of CdSexTe1-x alloy-based cells to improve 

carrier concentration and lifetime [101]. Compared to S, Se has a higher solubility in CdTe, 

allowing for higher Se concentrations in CdSexTe1-x and therefore, lower bandgap [102]. The 

effective bandgap of CdSexTe1-x depends on the amount of Se in the alloy. There exists an optimum 

amount of Se, for which the bandgap reaches a minimum due to the bowing band effect before it 

starts increasing again. One of the most critical steps to achieve high efficiency CdTe solar cells 

is the CdCl2 HT. This treatment improves p-type doping, enhances carrier collection, causes 

recrystallization, and promotes inter-diffusion of at the CdS/CdTe junction, which reduces 

interface recombination [103]. The CdCl2 annealing temperature and time can be used to control 

the CdSe/CdTe inter-diffusion. Another critical parameter is the CdSe thickness since any unused 

CdSe layer can be detrimental to the device performance as it lowers VOC [104]. The effect of 

CdSe thickness and CdCl2 HT on the CdSe/CdTe inter-diffusion and the photovoltaic device 

performance is presented in this work.CdSe was deposited by RF sputtering in Ar ambient at room 

temperature. CdSe thicknesses were varied between 75 – 1500 Å. CdS and CdTe were deposited 

by close-spaced sublimation (CSS). After the CdTe deposition, the devices were CdCl2 heat 

treated, which is a standard processing step for CdTe solar cells. The CdCl2 HT was carried out 

under He: O2 ambient at temperatures ranging 390 – 450 ℃. Prior to the formation of the back 

contact, the CdTe surface was etched in a bromine-methanol solution. The back contact was Cu-

doped graphite, followed by thermal annealing.                                        

4.2.3 Formation of CdSexTe1-x via Direct CSS                                                             

This work describes the properties of CdSexTe1-x (CST) alloy films and solar cells produced 

by the Close-Spaced sublimation (CSS). The source materials were CST alloys of various 
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Selenium compositions (x=5, 10, 15, 20, and 25 %). Solar cells had the configuration: 

TCO/MgyZn1-yO (MZO)/CST/CdTe. The properties of CST films and cells were investigated as a 

function of Se composition (x), substrate temperature (TSUB), and ambient used during the CSS 

deposition, which is shown in Figure 26.  It was found that increasing the Se composition resulted 

in smaller grain sizes and lower open circuit voltage (VOC) corresponding to the reduction in band 

gap with increasing Se composition.  The grain size was also found to increase with increasing 

substrate temperature (550 – 640 ℃) from 1 to 3 µm.  Capacitance measurements indicated a small 

but consistent increase in net p-type doping with increasing substrate temperature, which was 

accompanied by an increase in VOC.  The addition of oxygen during the CSS deposition resulted 

in improved film density. The CST films were deposited by CSS using in-house synthesized CST 

sources prepared from CdTe (99.999 %) and CdSe (99.999 %) powders.  The Se composition of 

the CST sources and films was measured using Energy Dispersive X-Ray Spectroscopy (EDS), 

and it depended on the source sublimation temperatures as shown in Figure 27. 

                                    
Figure 26  The Close Spaced Sublimation system for depositing the CdTe and CST alloy. 

 
Figure 27  Formation of CST films by Close Spaced Sublimation (CSS) with different source 

temperatures. 
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CHAPTER 5 

STUDY OF WINDOW LAYER 

Figure 28 shows the substrate configuration of the CdTe cell investigated during this 

project.  The ternary compound MZO has been recently used as a window layer to replace CdS 

[105].  Its larger bandgap allows for additional JSC gains in the short wavelength range of the solar 

spectrum, below 510 nm, the absorption edge for CdS. As indicated in Chapter 4.2.1 the 

composition of MZO is an important material property that influences its bandgap, conductivity, 

and conduction and valence band location, among others and therefore it must be optimized for 

the CdTe solar cell for maximum performance.  

 
Figure 28  Application of MgxZn1-xO as a window layer on the CdTe thin film solar cells. 

5.1 Characterization of MgxZn1-xO 

MgxZn1-xO films with several composition ratios were prepared by RF magnetron co-

sputtering of ZnO and MgO targets. Table 4.1 shows the Mg content of these films determined by 

EDS measurements and the sputtering power applied to ZnO and MgO targets, respectively. The 



www.manaraa.com

 

 

53 

 

Mg composition increased as the ratio of the ration of the MgO to ZnO sputtering power applied 

to the target increased. 

As-deposited (at room temperature) MgxZn1-xO was found to be amorphous; thus, the XRD 

measurement was unable to detect the XRD patterns.  Figure 29 shows XRD patterns of MgxZn1-

xO films, which were annealed at 400 ℃ in inert ambient (He) for 20 minutes.  A single peak 

corresponding to the (002) direction of the wurtzite hexagonal structure is present; this is consistent 

with previous work that demonstrated the structure for compositions below 0.50 [106].  The basic 

structure of MgxZn1-xO remains the same as that of ZnO for x<0.50.  As the Mg content increased, 

the (002) peaks shifted to higher diffraction angles. This shift suggests that the spacing of the plane 

narrows as the Mg content increase. 

 
Figure 29  XRD patterns of MgxZn1-xO films [0.15 ≦ x ≦ 0.5] grown on glass substrates and 

annealed at 400˚C in He ambient gas. 

 

Figure 30 shows the transmittance spectra for the films shown in Figure 29. The 

transmittances of all MgxZn1-xO films were greater than 80%.  A gradual shift of the absorption 

edge towards shorter wavelength with increasing Mg content is observed, as should be expected 

due to an increase in the energy gap.  These data were used to calculate the absorption coefficient 

using the equation shown below 
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αhν = C (hν - Eg)1/2 

where hν is the photon energy, Eg is the optical band gap, and C is the characteristic parameter of 

the transitions. The optical band gap was evaluated by extrapolating the linear portion of the (αhν)2 

versus hν plot onto the energy axis. The variation of the energy band gap as a function of Mg-

content is shown in Figure 31. The band gap increased almost linearly from 3.3 eV to 4.2 eV; this 

is in good agreement with what Kephart et. Al. obtained previously [107]. 

                                  
Figure 30  Transmission spectra of MgxZn1-xO films with various Mg compositions. 

                                   
Figure 31  Optical bandgap of MgxZn1-xO films with various Mg compositions. 

Figure 32 shows the variation of resistivity as a function of Mg content. Resistivities of as-

deposited films with higher Mg content was significantly higher and exceeded 107 (Ω-cm).  

Annealing in inert of oxygen ambient @ 500C resulted in lower resistivity in all instances.  The 

trend of increasing resistivity with Mg content remained.  The mechanism for the lower resistivity 

is not understood at this time and was not investigated further.  It is possible that annealing 

(18) 
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improves mobility due to improvements in crystallinity since as-deposited films were amorphous 

and became polycrystalline after annealing. 

                          
Figure 32  The resistivity of MgxZn1-xO films as a function of Mg contents with different 

post-annealing conditions.  

 

 
Figure 33  A basic energy band diagram of p-type CdTe devices and the light should be 

transmitted to the absorber, and charge carriers should be transported out. 

 

5.2 MZO/CdTe Interfacial Band Alignment – Modeling Results 

Figure 33 shows the energy band diagram of an ITO/CdS/CdTe device and Figure 34 

shows several ITO/MZO/CdTe energy band diagrams for three different MZO bandgaps (i.e., three 

different MZO compositions).   If the conduction band of the window is lower than that of the 

absorber, the resulting energy offset will result in a reduction in VOC and fill factor by encouraging 

interface recombination. A similar situation can occur if the window is degenerately doped. The 

Electron (-) 

hole (+) 
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Fermi level of the degenerately doped material can be leveled with the absorber conduction band, 

but typically accumulation in the semiconductor will not occur because the Fermi level is pinned 

at the conduction band of the absorber. Since the Fermi level is above the conduction band 

minimum of the highly doped layer, the window CBM will now be below the absorber CBM are 

displayed in Figure 34 (a). In the other case, if the conduction band of the window layer is above 

the conduction band of the absorber, there will be a barrier that the electron must surmount in order 

to be collected. This is referred to as a “spike.” If this spike is small, on the order of ~ 0.3 eV, it 

will not limit device performance, but if too high CBO ~ 0.8 eV, a barrier to current flow or “kink” 

will form. The latter is depicted in Figure 34 (c). The approximate maximum height is calculated 

by setting the saturation current of a Schottky barrier to the photocurrent and is approximately 0.3 

eV for typical materials [108]. Therefore, the ideal electronic material for a window layer is non-

degenerately doped and has a flat or small conduction band spike. Optically, the window layer 

should absorb as little light as possible (ideally zero), which means that a higher bandgap material 

and a thinner layer is desired. The impact of the emitter/absorber interface on CdTe cell 

performance results from (1) the conduction-band offset ΔEc, (2) the emitter doping and thickness, 

and (3) the density and energy distribution of interface defects. A positive ΔEc (spike) is beneficial 

to cell performance, which is shown in Figure 35 (modeling by WxAMPS) since it can induce a 

substantial hole barrier that suppresses the interface recombination [109].  

 
Figure 34  (a) Refer as a cliff (b) a flat or small spike (c) a large positive CBO as big spike 

will present a secondary barrier to electron flow by AMPS modeling. 
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Figure 35  The J-V curves of the devices with the various CBO (-0.2 to 0.8 eV) are simulated 

by WxAMPS. 

 

5.3 The Effect of MZO Bandgap on the Devices   

Band alignment measurements have indicated that a ZnO/CdTe junction results in a 

negative conduction band offset. ZnO alloying with MgO to produce MgxZn1-xO can shift the 

location of the conduction band of MZO to lower the offset or produce a small spike at the 

MZO/CdTe interface.  Increasing the composition also adds the benefit of increasing the optical 

bandgap of the layer for better UV light transmission so that the photon current can be generated 

in the high-energy spectrum region (short wavelengths).   

In order to understand the effect of both CdS and MZO thicknesses, CdS buffer layer were 

deposited between MZO and CdTe with various thicknesses of CdS film layer (deposition times 0 

to 80 sec), which were deposited by the Close Space Sublimation deposition. Thus, the devices of 

summary performances are demonstrated thicknesses of MZO (x=0.3) between 25 - 400nm is 

shown in Figure 36. The thicker MZO layer (> 1500 Å), is believed to cause an S-kink or roll-over 

in the current-voltage curve, regardless of MZO compositions are defined as functions as a window 

layer as the band alignment of the structure has been preliminarily optimized. However, MZO 

layers thinner than 100 nm show reduced Voc. It is believed to be associated with the increased 

electron barrier in the conduction band as devices have thicker MZO layer. On the effect of CdS, 



www.manaraa.com

 

 

58 

 

the thicker CdS can result in better FF, but the JSC shows a significant loss due to the window loss 

in the short wavelength.  

Results on MZO/CdTe resulted in JV with a significant rollover regardless of the MZO 

composition.  It was also observed that the performance was not very reproducible.  This behavior 

was attributed to the quality of the MZO/CdTe interface and potential instability of the MZO when 

exposed to the conditions of the CSS CdTe deposition process.  In order to test this hypothesis, 

subsequent experiments incorporated a very thin CdS layer between MZO and CdTe:  

MZO/CdS/CdTe. The thickness of CdS was approximately 25-50 nm. Spectral response 

measurements of MZO/CdS/CdTe junctions (with MZO compositions from 0 to 0.35) are shown 

in Figure 37.  The corresponding bandgap is greater than 3.3 eV (the bandgap of ZnO), and 

therefore no losses are observed in the short wavelength range. 

Figure 38 is shown all the devices of JV which exhibit VOC approached up 840 mV as the 

MZO composition x > 0.23; The window layers with higher magnesium compositions produce an 

extreme kink in the J-V curve due to the larger conduction band offset. Therefore, at the optimal 

thickness of 100 nm, made with the x=0.23 magnesium composition, numerous devices with 

efficiency values are revealed the performance over 15% in Table 5.1.  

 
Figure 36  The performances summary with Mg0.3Zn0.7O (250 to 3000 Ǻ) as window layers 

in various CdS deposition time (0 to 80 s). 
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Figure 37  The spectral response shows the Mg compositions from 0 to 0.35 in the 

wavelength between 400 to 900 nm. 

 

 
Figure 38  The J-V curves of the devices with the MZO thickness of 100 nm on the  

compositions from 0 to 0.35. 

 

Table 5.1   Summary table of MgxZn1-xO (x=0 to 0.35) devices. 

 

5.4 The CdCl2 Effect on MZO/CdTe Devices  

 The CdCl2 effect has been an essential processing step for CdTe cells since the late ’80s.  

Cells fabricated with MZO as the window layer were CdCl2 heat treated under various conditions 
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x=0.15  760 70.00%      24.07        12.81  

x=0.23 840 72.00%      25.29        15.30  

x=0.3 850 46.00%      23.47          9.18  

x=0.35 860 33.00%      23.05          6.54  
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to understand whether this process needs to be re-optimized for the new window, and the JV and 

SR are shown in Figure 39.  The optimum CdCl2 heated treatment temperature for typical USF 

CdS/CdTe devices has been 390 °C [110].  For MZO/CdTe devices, a higher temperature of 410 

°C was found to be optimum, as shown in Table 5.2. Temperatures above 390 °C were most likely 

causing excessive interdiffusion for the CdS/CdTe junction resulting in lower performance; other 

studies have also indicated loss of adhesion and delamination [111].  It appears that the MZO/CdTe 

interface can tolerate higher annealing temperatures. The improved performance for MZO/CdTe 

junctions at the higher CdCl2 annealing temperature, suggests that the chlorine passivating effects 

are more effective at higher temperatures. This could suggest (a) either enhanced recrystallization 

– i.e., larger grains and smaller GB volume – and/or (b) increased Cl concentration in the GB is 

needed for better GB passivation.  At 430 °C MZO/CdTe performance appears to degrade; this 

could be related to excessive amounts of Cl reaching the MZO/CdTe interface as the initial stages 

of a rollover begin to appear in the J-V data. The spectral response shows the carrier collection 

improve near the absorption edge with increasing CdCl2 HT temperature, and it is associated with 

the minority carrier lifetime increasing at higher CdCl2 temperatures. The best CdCl2 HT 

temperature has been optimized at the 410 °C with efficiency approx. 15%.  

 
Figure 39  (left) JV and (right) SR data for devices CdCl2 treated at 380 to 430°C with MZO 

(x=0.23)/CdTe devices. 
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Table 5.2   Summary table of MgxZn1-xO (x=0.23) devices in various CdCl2 HT temperature. 

 

5.5 Instability of MZO in Interface 

 MgxZn1-xO (MZO) has clearly demonstrated to be a suitable replacement for CdS. The 

devices are no CdS as a window layer that it is believed to penetrate more light into the absorber, 

and the MZO bandgap and electron density can be tuned based on the Mg of compositions, thus 

yielding the optimum conduction band offsets and adjusting recombination rates between 

TCO/MZO and MZO/CdTe interfaces can be accomplished. However, when the MZO as window 

layer was employed in the CdTe thin film solar cells, the effect of Mg composition and MZO 

materials itself has remained to complicate and challenging due to the lack of reproducibility and 

abnormal (roll-over) current-voltage curves. Simulations (WxAmps) indicate that this anomalous 

behavior can be attributed to front interface barrier effects.  Recent experiments demonstrated that 

this common MZO interface problem could be resolved experimentally by surface preparation, 

pre-heat steps, and removing oxygen during absorber deposition and CdCl2 treatment [112]. 

Oxygen during the cell fabrication process is likely to alter the MZO surface properties and 

MZO/CdTe band alignment. Two approaches can avoid this effect of oxygen. Firstly, after the 

deposition of MZO, the samples are performed in the higher temperatures with post-annealing 

treatment to stabilize the materials. Secondly, The fabrication process has been modified with no-

oxygen as ambient in any of deposition, including CSS CdTe, and CdCl2 HT treatment, etc. During 

CdCl2 HT VOC (mV)  FF (%) 
JSC 

(mA/cm2) 

Efficiency 

(%) 

380℃ 790 67    24.59      13.02  

390℃ 800 68    24.59      13.38  

410℃ 830 72    25.33      15.64  

430℃ 800 70    24.92      13.96  
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this work, oxygen was not eliminated from the fabrication process; an additional annealing step 

was developed to improve the MZO surface, which allowed for efficient solar cell fabrication.  

Prior to the deposition of CdTe, the MZO films were annealed in the presence of CdS vapors.  A 

CdS and the MZO/Glass substrate held in close proximity were heated at high temperatures (580-

640C); the experimental set up is shown in Figure 40.  EDS analysis after this annealing step did 

not detect Cd or S on the surface of MZO. 

Figure 41 illustrates a strong roll-under (“kink”) in the fourth quadrant of the J–V 

characteristic that was observed for all the devices exposed to the CdS vapors. This roll-under 

reduces the FF of all the cells to less than 50 %,  thereby severely limiting device efficiency. 

Devices made with MZO composition of 0.23 reached 870–890mV Voc; the FF remained 

relatively low.  Annealing the MZO films in inert of H2 ambient did not have the same effect as 

the CdS vapor annealing process, i.e., the roll-over did not improve. 

 
Figure 40  The diagram of Close Spaced Sublimation system with the process of CdS vapor 

for MZO films. 

 

In summary, the MZO/CdTe thin film solar cells have been fabricated with additional CSS 

CdS vapor annealed process in varied temperatures. The performance of devices (VOC, FF, Eff) 

are shown in Figure 42. Due to the stability improvement of MZO, the J-V measurement is no sign 

of roll-over so that the FF is increased considerably compared with the MZO devices has not been 

CdS vapor annealing. The VOC is still retaining the high level of performance, owing to the effect 

CdS Vapor 
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of interfacial band alignment. Therefore, with the elimination of S-kink, the best performing 

MZO/CdTe cell has accomplished an efficiency up to 15 % with a VOC of 0.860 V and FF of 65% 

shown in Figure 42 as well. The results provide significant insights for improving the performance 

of MZO/CdTe solar cells. 

 
Figure 41  The light J-V in the various CdS vapor temperatures on the MZO devices. 

 
Figure 42  The performances summary are shown for devices made with Mg0.23Zn0.77O as 

window layers devices in various CdS vapor temperatures process. 
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CHAPTER 6 

STUDY OF BI-LAYER CDSE/CDTE 

 The highest efficiencies of thin-film CdTe solar cells have increased drastically during 

recent years and now exceed 22.1% [1]. The limitation in performance for polycrystalline CdTe 

cells has been primarily due to their low carrier concentrations and lifetimes.  One of the 

innovations was the alloying of CdTe with CdSe that resulted in a lower bandgap absorber and 

therefore higher JSC.  Cells discussed in this chapter were fabricated via the interdiffusion of  

CdSe/CdTe bi-layers to form CST. The configuration of the device is 

ITO/MZO/CdS/CdSe/CdTe/Cu-doped graphite (Figure 43).  

 

Figure 43  Configuration of CdSe/CdTe solar cells. 

 

6.1 JSC in Inter-Diffusion Bi-Layer CdSe/CdTe  

Figure 44 shows SR data and the corresponding to several devices fabricated by 

interdiffusion of CdSe and CdTe using various CdSe thicknesses.  The SR in the 400-820 nm range 

begins to decrease when the thickness of CdSe exceeds 300 nm. This is believed to be due to 

incomplete interdiffusion that results in a CdSe/CST/CdTe structure.  In order to evaluate the 

impact of CST formation on the “gains” in JSC due to the smaller CST bandgap, the current 
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generation above 830 nm was calculated by integrating the SR with AM1.5G.  These data are 

shown in the plot below the SR chart and suggests that at the largest thicknesses the gains are 

higher, due to the formation of a CST with the smallest bandgap.   

 
Figure 44  The SR data shows CdSe thicknesses from 0 to 1500 Å form CST by inter-

diffusion. 

 

6.2 The Study of CdSe/CdTe Bi-Layer on the Devices Performance 

In CdS/CdTe solar cells, the CdCl2 HT promotes inter-diffusion at the CdS/CdTe junction, 

which improves the electronic properties of the junction by reducing the lattice mismatch, stress, 

and interface recombination [113]. In this work, the effect of CdCl2 HT has been investigated for 

four different annealing temperatures (390, 410, 430, and 450 °C). The thickness of CdSe is 

another critical parameter that influences the properties (composition) of the CdSexTe1-x layer 

formed as a result of inter-diffusion between CdTe and CdSe. It can determine the Se distribution 

in CdTe1-xSex and the resulting bandgap of the absorber at the junction interface. To date, the CdSe 

thickness has been varied from 75 to 1500Å. Figure 45 shows the JV and SR for CdSexTe1-x 

devices fabricated with different CdSe thicknesses and CdCl2 HT at the temperature of 410°C. 

Both the VOC and FF decrease with increasing CdSe thickness. The redshift in SR for devices with 

higher CdSe layer thicknesses indicates a reduction in the bandgap of the absorber as expected in 
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CdSexTe1-x alloy due to bowing effect. However, the devices with thicker CdSe (> 300 Å) show 

lower carrier collection in the blue region. This is believed to be due to residual CdSe not fully 

consumed via inter-diffusion with CdTe (i.e. CdSe/CST/CdTe), which might also explain the 

lower VOC and FF of the devices. The drop in VOC for thicker CdSe is also reported by other groups 

[114]. Similar results are observed for devices CdCl2 HT at 390 °C. Figure 46 (left) shows the SR 

of devices with CdCl2 HT at 430 °C. These results suggest that CdSe is fully inter-diffused for all 

thicknesses, as indicated by the increased carrier collection in the blue region. The QE at long 

wavelengths increases with increasing CdSe thickness. This clearly demonstrates that the bandgap 

decreases gradually with increasing CdSe thickness indicating an increase in the composition (x) 

of CdSexTe1-x. This redshift is greater compared to devices annealed at lower temperatures for the 

same CdSe thicknesses (see Figure 45). The corresponding bandgaps calculated from the 

absorption edge for all the devices with different CdSe thicknesses and CdCl2 heat treatment 

temperatures are shown in Figure 46 (right). For 390 and 410 °C HT, there is a slight decrease in 

bandgap with increasing CdSe thickness, which appears to level off at larger thicknesses. The 

largest bandgap reduction occurs at a temperature of 430 °C. The smallest bandgap (1.36 eV) 

corresponds to the device with the thickest CdSe of 1500 Å. Additional increases in the CdCl2 HT 

temperature (450 °C) to further reduce the bandgap resulted in flaking and delamination for the 

majority of the films. 

 
Figure 45  The (left) JV and (right) SR measurements in the various CdSe thicknesses (0Å to 

1500Å) on CST/CdTe devices. 
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Figure 46   The (left) SR and (right) bandgap data for CdSexTe1-x devices with different 

deposited CdSe thicknesses (0/75/300/500/1000/1500Å) in the CdCl2 heated treatment 

temperature at 430°C. 

 

A summary of the cell results is shown in Table 6.1. 

Table 6.1  Device performance for various CdSe thicknesses. 
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6.3 Defect Analysis of CdSe/CdTe Devices 

DLTS measurements have been performed on selected samples to analyze the deep defect 

distribution. The devices are chosen based on the following two criteria – normal JV behavior (no 

‘kink,’ roll-over, etc.) and fully inter-diffused CdTe/CdSe bilayer, as indicated by the SR data. 

Figure 47 (left) shows the DLTS spectra for devices CdCl2 heat treated at 410 °C with different 

CdSe thicknesses. The spectra for the device without CdSe is identical to baseline CdS/CdTe 

devices. The positive peak in the temperature range 150-200K indicates a minority carrier trap 

(E1). This shallow trap (EA ~ 0.3eV) has been attributed to ClTe [115]. The negative ΔC near room 

temperature indicates a deep majority carrier trap. For devices with CdSe, an additional positive 

peak is observed at temperatures above 240K. This indicates a deeper minority carrier trap (E2). 

The DLTS measurements are performed at six different rate windows to calculate the activation 

energy. Figure 47 (right) shows the different rate window spectra for the device with 500 Å CdSe. 

The trap activation energy is calculated from the Arrhenius plot of the peak positions at different 

rate windows (Figure 47 insets). The increasing intensity of E2 with CdSe thickness suggests the 

formation of a Se related complex defect. This deep minority carrier trap (EA ~0.52 eV) may have 

a compensating effect; however, since it is known that minority carrier lifetimes in CdSexTe1-x are 

higher compared to CdTe films, this Se related defects are not expected to impact lifetimes referred 

to later TRPL measurements [116]. Figure 47 (table) lists the calculated activation energies and 

traps concentrations for these defect Capacitance-Voltage (CV) measurements for the devices 

(Figure 48) shows the effect of CdSe thickness on the doping concentration. There is an initial 

(small) increase in carrier concentration for CdSe thickness up to 300 Å. Higher CdSe thicknesses 

result in reduced doping; this reduced doping may be due to the E2 defect discussed above. The 

same trend was observed for all CdCl2 HT temperatures. This is possibly due to an increase in the 
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concertation of the deep minority carrier trap observed in the DLTS measurement (Figure 47) for 

thicker CdSe devices. Preliminary results from minority carrier lifetime measurements are shown 

in Table 6.2. Comparison between the two samples heat treated at 410 °C with and without CdSe 

indicate that CdSe improves the minority carrier lifetime. Similarly, for the 75 Å CdSe devices, 

increasing the CdCl2 HT temperature to 410 °C shows improved lifetime. This suggests that both 

CdCl2 HT temperature of 410 °C and a low Se content CdSexTe1-x alloy improves lifetime. 

Therefore, at the low thickness of CdSe net p-type doping concentration (CV) and minority carrier 

lifetime (TRPL) increase. Such devices show better VOC’s; however, no significant current gain is 

observed due to the small amount of CdSe that did not result in significant bandgap reduction. 

Increasing the CdSe thickness results in lower p-type doping. Thicker CdSe results in higher JSC, 

but exhibits lower VOC and FF, possibly due to a combined effect of low doping, deep defects, and 

the smaller bandgap of the CdSexTe1-x alloy. Therefore, an optimum CdSe thickness (CdSexTe1-x 

alloy) must be achieved that can maximize JSC without losses in VOC. The best CdSexTe1-x based 

cell fabricated to-date exhibited VOC= 850 mV, JSC= 26.3 mA/cm2, FF= 73 % and efficiency 16.3%. 

The effect of CdCl2 HT and CdSe thickness on the performance of CdSexTe1-x photovoltaic 

devices has been investigated. Devices with small amount of CdSe shows higher doping and 

minority carrier lifetime, however with no significant current gain. Both higher CdCl2 annealing 

temperature and larger CdSe thickness appear to promote CdSe-CdTe inter-diffusion and improve 

collection in the red region due to the reduction of absorber bandgap. Lower VOC in thick CdSe 

devices has been attributed to the reduced bandgap, low doping, and the presence of deep defects. 

An optimized CdSe thickness and CdCl2 HT temperature can lead to both improvement in VOC 

and JSC and thus improved efficiency. 
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Figure 47  The (left) comparative DLTS spectra for devices CdCl2 treated at 410 °C with and 

without CdSe, obtained with a rate window of 0.02 ms. The (right) DLTS spectra for CdTe device 

with 500 Å CdSe at 6 different rate window. The corresponding Arrhenius plot to calculate the 

defect activation energy is shown on the inset. 

 

 

          
Figure 48  P-type net doping concentration for devices with various CdCl2 treatment 

temperatures (390 to 430 °C) and Se compositions.  

 

Table 6.2  Minority carrier lifetime for different CdSe/CdTe devices. 
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6.4 Se Profile Study of CdSe/CdTe Devices 

Se profiles in CST (CdSexTe1-x) films which is fabricated by annealing CdSe/CdTe bi-

layers has been investigated using transmission electron microscopy (TEM) and energy-dispersive 

X-Ray spectroscopy (EDS). The thickness effect of CdSe layer was studied on the CST alloys with 

the relationship of CdCl2 annealing conditions. The CdSe thickness was varied from 75 to 1,500 

Å.  Compared with the “thin” films (CdSe 75-300 Å), all “thick” films (CdSe>300 Å) revealed 

decreased grain structure at the interface junction. However, the “thin” films exhibited larger 

columnar grains which similar with regular CdTe structure that extended through the CST/CdTe 

interface. The alloy layer for “thick” CdSe films appeared as a bilayer with two CST compositions: 

Se-rich and Te-rich region, respectively. As mention above, the CdSe/CdTe devices revealed Se 

related defects in the films with thicker CdSe (1,000 and 1,500 Å). The Se compositional profile 

was found to be greatly dependent on the CdSe thickness and CdCl2 heat treatment conditions.  

Due to the formation of voids at the interface with large CdSe thicknesses (> 300 Å), it is believed 

Se composition of CST alloys must be kept low to avoid performance degradation. 

Cross-section TEM characterized the devices for the study of grain-structure and elemental 

distribution with various CdSe thicknesses. Figure 49 exhibits the EDS analysis on the Se 

composition at the different regions across CdSe/CdTe bi-layer with varying CdSe thicknesses: 

150, 300, 1000, and 1500 Å.  The CdCl2 HT was conducted at 410 °C for the thin CdSe films 

(<150 Å) and the temperature increased to 430 °C  for all thicker films (>300 Å) (lower CdCl2 

anneal temperatures for thick CdSe films resulted in incomplete interdiffusion; i.e., not all CdSe 

was consumed). The Se composition increases with the thickness of the CdSe layer, as seen from 

left to right in Figure 49. In addition, Se diffuses deeper into the CST film, as anticipated because 

of more aggressive CdCl2 annealing treatment. If the CdSe films are thicker (1,000 and 1,500 Å), 



www.manaraa.com

 

 

72 

 

the Se composition became inhomogeneous. Each region of Se-rich and Te-rich was identified by 

the location of proximity to CdSe or CdTe side. For example, in the CdSe side within 0.5 μm, the 

Se composition is higher than the CdTe side of the metallurgical junction for the CST alloys. The 

EDS mapping of CdSe (1,500 Å)/CdTe devices with the highest CdCl2 HT at 430 °C is shown in 

Figure 50. The results also show that Cl diffused throughout the CdSe/CdTe absorber and appears 

to accumulate at the CdS/CST interface and the grain boundaries. The MZO layer retained intact, 

indicative of no elemental diffusion throughout the material. The same E-image exhibits in the 

profiles of Se and S, which proceeds inter-diffusion in the film stack, respectively. Thus, for the 

Se-rich region of the CST alloy, it is believed to contain both S and Se elements after the inter-

diffusion process. The Te concentration was found (from EDS line-scanning analysis not presented 

here) to decrease in this region.   

 
Figure 49  Compositional maps for CST films produced with CdSe films of various 

thicknesses (150, 300, 1000, and 1500 Å from left to right). 

 

 
Figure 50 EDS elemental mapping for a CST film produced with CdSe thickness (1500 Å). 
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Figure 51 shows that the CST and CdTe grains are larger when the CdSe layer was “thin” 

(150 and 300 Å). The grains also extended throughout the entire CST/CdTe stack.  No particular 

stacking faults were present in the CST/CdTe absorber layer after the inter-diffusion process, 

regardless if twin grains were present. In comparison, as the CdSe thickness increased (1,000 and 

1,500 Å), the large columnar grains no longer extended throughout the entire absorber layer 

structure at the CST/CdTe junction. A region of small grains was observed above the junction 

interface which is the CST alloy. The coverage of the CST/CdTe region appeared to be non-

uniformed across the MZO layer, and the presence of voids is evident at the interface. 

 
Figure 51  STEM images for three CdSe thicknesses (300, 1,000, and 1,500 Å) (left to right) 

showing variations in the grain structure. 

 

 
Figure 52  EDS line scanning results for two CST films (CdSe 1000-left and 1500 Å- right) 

produced in a CdCl2 HT temperature at 430 °C. 

 

The EDS line scans are presented in Figure 52 for two samples with different CdSe 

thicknesses (1,000 and 1,500 Å). The concentration of Se increased for the structure with the 

thicker CdSe film. The entire inter-diffusion can be confirmed in the EDS line scan profile, which 
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revealed the Se concentration gradually decreased within the first micrometer of the CdTe layer to 

form the CST alloy. The variation in the Se diffusion profiles emphasizes the effect of the CdSe 

thickness in forming a homogeneous CST alloy, especially at higher CdCl2 annealing 

temperatures. In addition, the inter-diffusion process is extensive at higher CdCl2 HT temperatures 

(> 420 °C); however, the devices showed the degradation of the junction quality via the formation 

of voids.  The formation of the voids at the CdSe/CdTe interface is due to a mechanism called 

“Kirkendall effect,” which is the result of inter-diffusion between two semiconductor materials 

that have entirely different diffusion rates of the atoms [117]. The poor quality of the CdSe/CdTe 

interface structure was taken in the cross-section images for the thick CdSe (>300 Å) layer, show 

several voids in the CST region. Devices with “thick” CdSe (> 300 Å) had been previously found 

to have poor open-circuit voltage (VOC), likely attributed to the inhomogeneity of the CST alloy 

and the voids (in addition to the decreased bandgap). 

The device performance was exhibited in Table 6.5 shows that JSC can improve to above 

28 mA/cm2 at lower CdCl2 HT temperatures (< 430 ℃). The device JSC increased at high Se 

compositions (approx. 15%), due to a reduction in the CST bandgap; recent samples were 

deposited the CST alloys  by direct sublimation with Se composition of 40% (to be discussed later) 

have reached JSC approximately 30 mA/cm2, clearly indicating the composition effect of CST in 

improving the cell current due to carrier collection in the long wavelengths. Figure 53. exhibites 

the Spectral Response (SR) and Light Current-Voltage (J-V) measurements for cells. The devices 

were fabricated with CST alloys which are synthesized with CdSe thickness (1000 Å) and annealed 

at three various CdCl2 temperatures. The CdSe is believed to have been completely consumed via 

inter-diffusion for all CdCl2 annealing temperatures as evidenced by the red shift in SR @ 880 nm 

shown in Figure 53 (right). The appearance of a “kink” in the JV data suggests that the presence 
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of a barrier (a discontinuity on the conduction band) for the cell annealed at the highest 

temperature; thus in order to improve the device performance, the CST composition/formation and 

the buffer/window layer have to be simultaneously optimized. 

Table 6.3  Device performance for various CdCl2 HT. 

 

 
Figure 53 Light J-V and SR for three devices fabricated with 1000 Å thick CdSe and 

annealed at different CdCl2 temperatures (390 to 430 °C).  

 

The effect of CdSe thickness on the Se profile in CST alloys, which are formed by various 

CdCl2 HT for CdTe/CdSe bi-layers has been studied. TEM and EDS analysis both supported that 

CST films synthesized with “thin” (< 300 Å) CdSe films resulted in well inter-diffused CST films 

and a homogeneous grain structure which contributed to the uniform CST alloy. Thick (> 300 Å) 

CdSe films resulted in CST alloys with random smaller grain at the interface and inhomogeneous 

Se profiles, with a Se-rich region and Te-rich region. Also, the thick CdSe (> 300 Å) lead to the 

presence of voids at the interface, which is detrimental to device performance. These poor interface 
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junction can be used to point out the loss in VOC for devices fabricated with CST films synthesized 

via annealing of CdTe/CdSe bilayers.  In the next chapter, the direct sublimation of CST alloys is 

described as an improved approach for the formation of MZO/CST/CdTe junctions. 
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CHAPTER 7 

CDSEXTE1-X BY DIRECT SUBMILATION OF CST ALLOY 

The alloying of CdTe with CdSe for the formation of CST has been found to improve 

carrier lifetimes, which is a requirement for obtaining high VOC. The smaller bandgap of CST (Eg= 

1.36 - 1.41 eV) results in higher JSC, but is also expected to lower the limit of the maximum 

attainable VOC. It was also found that net p-type doping in CST is lower when compared to 

similarly processed CdTe devices, which can also lower VOC. Grading of CST alloys can be used 

to enhance carrier collection, which is an additional benefit from the use of CST alloys [118]. The 

bulk of absorber has gradually increased in conduction bandgap can be associated with grading 

CST alloys of various Se composition and CdTe from the front of the junction by achieving the 

best performance. One of the requirements to achieve high efficiency CdSexTe1-x /CdTe solar cells 

is the quality (homogeneity, point defects, etc.) of the alloys and the doping concentration [119].  

It was described in the previous chapter that CST films fabricated using inter-diffusion of CdTe 

with CdSe layers resulted in the formation of voids at the “junction,” inhomogeneous composition, 

and “unused” CdSe (incomplete interdiffusion). The quality of CST can be improved via direct 

deposition (i.e. not interdiffusion of bi-layers) using the Close Spaced Sublimation (CSS) 

deposition and CST alloys as the source materials [120]. This can result in homogenous CST 

alloys, and improved control of the junction interface (MZO/CST).  The CSS process offers a 

means of controlling the grain size, therefore enabling improved lifetimes due to the reduction in 

grain boundaries [121]. Despite the various competing mechanisms discussed above – i.e. smaller 

bandgap that can lead to higher JSC but lower VOC, decrease in net doping with Se concertation etc. 
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- the CSS offers the flexibility to optimize the properties of CST for maximum performance (grain 

size/structure, lifetime etc.). 

 

 
Figure 54  SEM images show the CST alloy with 5 to 25% of Se incorporated CdTe 

respectively. 

 

7.1 Effect of CST Composition (x) 

The surface morphology/grain structure of CST films (approx. 3 µm) with various Se 

compositions are shown in Figure 54.  It can be seen that increasing the Se composition (0 ≦ x ≦ 

25 %) of the CdSexTe1-x alloys results in a decrease in the grain size. Therefore, the structural and 

morphological properties exhibit a strong dependence on the alloy composition (x) [120].   Figure 

55 shows that increasing the Se composition (x) results in a gradual shift of the (1 1 1) peak from 

CdTe side to CdSe, as expected.  Using the XRD data, the lattice constants for the various alloys 

were calculated (Å) and are shown in Figure 56 (Lattice constants for CdTe (6.48 Å) and CdSe 

(6.08 Å)) The XRD peaks (1 1 1) also exhibited broadening with increased Se composition (x) 

suggesting a decrease in the grain size.  The grain size of CST films was calculated using equation 

(19) below and compared to SEM analysis. The calculated grain sizes for the various Se 

compositions are shown in Table 7.1, which have been validated by both XRD and SEM data. 
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Size =
𝐾𝜆

𝑊𝑖𝑑𝑡ℎ∗cos 𝜃
    

Using the lattice constant calculated from the XRD data above, the composition of CST 

alloys was also obtained using Vegard’s Law (equation 20 below): 

a(x) = xaCdSe + (1-x)aCdTe 

where a(x), aCdSe and aCdTe are the lattice constants of the CdSexTe1-x, CdSe and CdTe, respectively.  

The corresponding compositions were shown in the analytical data which are within 5% of the 

values obtained using EDS analysis exhibit in Table 7.2. 

Table 7.1  The grain size with various Se composition (x= 0 to 25%) of CdSexTe1-x films. 

x  

 (%) 
  

Grain Size 

(XRD) 

(µm) 

  

Grain Size 

(SEM) 

(µm) 

0  6.10     6.00 

5  3.21     3.00 

10  2.54     2.50 

15  2.06     2.00 

20  1.45     1.50 

25  1.24     1.30 

 

 
Figure 55  XRD patterns of CST films [0 ≦ x ≦ 1] grown on glass substrates. 

(19) 

(20) 
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Figure 56  The lattice constant of CST films [0 ≦ x ≦ 1] grown on glass substrates from 

XRD preferred peak (1  1  1). 

 

Table 7.2  The Vegard’s Law vs. EDS analysis for various Se compositions. 

x 

(EDS) 

(%) 

  
2θ 

(deg) 
  

ad (111) 

(Å) 
  

x 

(XRD) 

(%) 

6.45  24.05  6.47  6.95 

10.52  24.11  6.46  11.01 

19.65  24.27  6.38  20.52 

25.12   24.43   6.35   25.41 

 

It is well known that the addition of S or Se into CdTe to form the ternary compounds it 

initially results in lower optical bandgap due to the bowing effect.  The energy gap of the CST 

allows us shown in Figure 57; the red dotted line represents theoretical calculation from, and the 

blue diamonds are data points measured from this work. 

 
Figure 57  Optical bandgap of CdSexTe1-x films [0 ≦ x ≦ 1] deposited on glass substrates by 

CSS technique. 
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Figure 58  The (left) open-circuit voltage and (right) short-circuit current data in different 

CST alloys thicknesses (0.2 to 1.5 um).  

 

7.2 The Thickness Effect on CST Devices (Direct CSS) 

The effect of the CST thickness on device performance is summarized in Figure 58 for 

three Se compositions (5, 10, and 25%). The VOC is all exhibited relatively low in the thicknesses 

of CST  layer (< 1.0 um) for all Se compositions. However, the CST thickness is increased, and it 

is believed to be beneficial to improve the VOC. In the JSC, as increasing CST thickness, the current 

is slightly increased for all Se compositions due to the more carrier collection in the long 

wavelength that is shown in Figure 59. The effect of CST thickness will be further investigated. 

 
Figure 59  Spectral response for various CST thicknesses in the 10% Se compositions. 

7.3 Effect of CSS Ambient and Substrate Temperatures on CST 

The quality of CdTe and CST films using CSS depends on the ambient pressure and 

substrate temperatures, both of which influence the grain structure of the thin films. Since the grain 

size decreased with the addition of Se, the possibility to increase the grain size via the ambient gas 
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and substrate temperature have been investigated. Figure 60 shows the SEM micrographs of CSS 

CST films prepared at four substrate temperatures (550, 600, 620, and 640 ℃). The film deposited 

at 620 ℃ consists of relatively large grains 3-4 µm in size and is dense. The film deposited at 500 

℃ consists of much smaller grains which appear to coalesce in clusters of approximately 1 µm in 

size.  Overall, the grain size increased as the TSUB increased from 550 to 620 ⁰C. The largest grains 

were observed for the 620 ⁰C in Se composition (x= 25 %).  Therefore, it is possible to utilize the 

CSS substrate as a means for controlling the grain size.  

     The addition of O2 as ambient gas during the CSS deposition, shifts CSS from diffusion-

limited to reaction-limited growth, primarily through source oxidation. The main benefits of 

oxygen in CdTe films has been found to be passivation of donors and defects, increase in acceptor 

density, and reduction in the grain size. The incorporation of O2 also lowers the sublimation rate 

and has been found to increase in the number of nucleation sites, and it can, therefore, be utilized 

to control the film grain size.  

The X-ray diffraction patterns of as-deposited CST alloys (x= 25%) films are shown in 

Figure 61. The films were deposited in He/O2 ambient at a TSUB between 550 to 640 ⁰C. The CST 

samples have a cubic zinc-blende structure due to the Se composition being below 60 %. The as-

deposited CST films exhibited a strong preferred orientation along the (1 1 1) planes parallel to 

the substrate. For the samples deposited at TSUB 620 ⁰C, the peak (1 1 1) had a narrow FWHM 

which indicates larger grain size with increasing TSUB. The change in TSUB did not cause a shift in 

the (1 1 1) peak; therefore the lattice constant and composition were found to be independent of 

TSUB (within the range of temperatures studied to-date). The preferential orientation of the CST 

along the (1 1 1) direction improved at higher TSUB as indicated by the higher relative intensity of 

this peak. 
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Figure 60  The SEM images of CST alloys in various substrate temperatures at He/O2 

ambient gas. 

 
Figure 61  The XRD pattern of CST (25% Se) deposited on MZO/ITO glass substrates in 

various TSUB at He/O2 ambient gas. 

 

Table 7.3  The performance of devices for various substrate temperatures (CST x=25%). 

 TSUB VOC (mV) FF (%) 

JSC 

(mA/cm2) 

Efficiency 

(%) 

Bandgap 

(eV) 

550℃ 800 56.20 28.57 12.85 1.37 

600℃ 810 58.50 28.61 13.56 1.37 

620℃ 830 64.50 29.21 15.64 1.38 

640℃ 810 54.80 28.64 12.71 1.39 
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7.4 CST/CdTe Bilayers 

 CST/CdTe bilayers, similar to structures used for solar cell fabrication, were also prepared.  

CST alloys deposited at TSUB from 550 to 640 ⁰C, followed by a CdTe deposition at TSUB  (580 ⁰C) 

and TSOU (680 ⁰C)  by CSS respectively. Figure 62 shows cross-sectional STEM images for these 

structures. Firstly, the grain size for the CST films adjacent to the junction becomes more 

significant with increasing temperatures. For the higher temperatures, the grain structure is similar 

to CdTe with large grains extending through the thickness of the entire bi-layer CST (x=25 

%)/CdTe, and there is no clear boundary between CST and CdTe. However, at the lower 

temperature, the CST alloy consists of smaller grains than CdTe, and there is a clear boundary 

between CST and CdTe. In contrast to these CST/CdTe bilayers, CST films formed by post-

deposition interdiffusion of CdSe/CdTe layers exhibited significant void formation due to the 

“Kirkendall effect” [117]. As it will be discussed in the next section, solar cell performance 

improved for devices fabricated with CST deposited at high temperatures. 

Figure 63 shows EDS line scans for CST films deposited at TSUB 620 ⁰C with Se 

composition (x=25 %) (thicknesses 2 10% µm) as well.  The two films were annealed at different 

CdCl2 temperatures (410 and 430 ⁰C ).  The Se profile for the film annealed at 410 ⁰C exhibits a 

sharp drop at approx. 1.8 um suggesting that Se out-diffusion from CST to CdTe is limited, while 

the film annealed at 430 ⁰C clearly shows a gradual decrease in the Se profile concertation that is 

suggesting that the CdCl2 annealing temperature can be used for grading the Se composition. In 

conclusion, for the low CdCl2 HT temperature, the entire inter-diffusion could be confirmed in the 

EDS line scan profile, which revealed the Se concentration do not decrease within the first 

micrometer of the absorber layer for the bulk of CST alloy. On the other hand, in order to 

effectively passivate the grain boundaries and engineer the grading CST layer, the CST alloy is 
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required to fabricate at aggressive CdCl2 HT temperatures (430 °C). Therefore, it is feasible to 

achieve uniform films without degrading the junction quality via the formation of voids by 

implementing inter-diffusion of bi-layer CdSe/CdTe [119]. 

 

Figure 62  The STEM images of CST alloys in various TSUB (550 - 640 ⁰C) at He/O2 ambient 

showing variations in the grain structures. 

 

 

 
Figure 63  The EDS line scanning of CST (25% Se)/CdTe devices at TSUB (620 ⁰C) in CdCl2 

HT at 410 (up) and 430 ℃ (down) respectively. 

 

7.5 The Study of CST on the Devices Performance 

Device performance for several cells fabricated with CST/CdTe bi-layers (x=25%) is 

presented in Table 7.3.  JSC was calculated from integrating the QE data using AM1.5.  The last 

column shows the amount of JSC generated by absorption beyond the CdTe bandgap (i.e., @ 

wavelengths >855 nm).  In all devices, the increase due to the bandgap change in CST was > 4.0 

 

TSUB 640℃ TSUB 620℃℃ TSUB 550℃ 
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mA/cm2. The spectral response (SR) for the cells listed in Table 7.3 is shown in Figure 64 (right).  

The shift in the SR data at the absorption edge is small (∆λ=13 nm), corresponding to a bandgap 

change of <0.02 eV as shown in Table 6.2. However, the absorption edge (optical bandgap) slightly 

changes from 1.37 to 1.39 eV, which indicated the effect of fabrication process alternate the Se 

diffusion profile of CST alloy after completing the cells. From the EDS analysis and XRD lattice 

constants calculation showed the Se compositions were no apparently changed before completing 

cells in various TSUB for CST alloys depositions. Increasing the Se composition to 40% leads to 

JSC > 30 mA/cm2 (cells not shown here), clearly demonstrating the role of CST in increasing the 

cell current; however, the VOC decreased to 770 mV.  The effect of substrate temperature on the 

VOC is seen in Table 7.2 and Figure 64 (left) that shows the light J-V for the same cells.  The VOC 

initially improves with increasing TSUB and decreases for the highest temperature of 640 ℃. The 

initial increase can be explained partly on  (a) the improved grain structure near the interface (as 

the temperature increases) as shown in the previous section, and (b) to a lesser extent due to the 

small bandgap increase shown in Table 7.2. Another reason is p-type net doping dependent, which 

was exhibited where the VOC and net p-type doping as a function of substrate temperatures are 

shown in Figure 65 (left). The data suggests that the substrate temperatures for CST deposition, it 

is believed to affect the p-type net doping on the devices, with an optimum substrate temperature 

of 620 ℃ for x=25 % CST alloy obtained at VOC of 830 mV and p-type net doping approximate 

2.90E+14 cm-3. However, the devices of net p-type doping are not a significant influence in various 

TSUB for increasing the VOC in this experiment due to a small change of doping concentration, 

which has been modeling by both empirical and theoretical simulations perspectives. In the light 

J-V curve, which became soft at the TSUB (640 ℃), it is indicated to cause the reduction of FF. 

From Figure 65 (right), the color J-V in different wavelength (460 to 700 nm) is revealed the theory 
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of voltage dependency in the carrier collection with a given wavelength and is relative to a lifetime. 

Thus, regarding TSUB of 640 ℃, the VOC &FF have been decreased shown in both Figure 65 (left) 

and Table 7.2, due to the passivation of absorber defect and diffusion length. 

In summary, it is apparent that the impact of processing on the cell characteristics is 

suggested to attain the optimum Se composition, improve the grain structure of CST alloys, and 

increase p-type net doping concentration. The CST alloys can be formed in the ultimate uniform 

and homogeneous film in the first region of the absorber layer, where the junction of devices are 

potential to avoid to suffer the detrimental grain structure (void) in the interface via inter-diffusion 

bi-layer CdSe/CdTe process. The grain structure appears to grow larger with increasing the 

substrate temperature according to TEM cross-section images. Thus, it is also believed that the 

enhancement of grain size and grain boundary cloud be relative to increase the p-type net doping 

for improving the VOC. The recent cell performance up to date is approximately 17.6 % for CST 

(x=20%)/CdTe device. The effect of Se compositions (x) on the performance of CdSexTe1-x films 

and photovoltaic devices fabricated by CSS using CST alloys sources have been investigated. The 

surface metrology and cross-section images showed that the high Se composition (x> 20%) of CST 

alloys films were increasing the grain growth and homogeneous layer of absorber stack layer with 

increasing TSUB during the CSS deposition. Devices with high Se composition (x=25 %) exhibited 

improvement of net p-type doping in C-V measurement and minority carrier lifetime in the higher 

substrate temperature (620 ℃), which shown in the light and color J-V. No significant loss was 

observed in VOC due to the lower CST bandgap (Eg=70 meV), considering that CdTe cells 

processed in a similar manner resulting in VOC of 850 mV. Higher substrate temperatures appeared 

to promote CST/CdTe grain structure and higher doping concentration. An optimized fabrication 

process and extrinsic doping of CST can lead to both improvements in VOC and JSC.  
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Figure 64  (left) Light JV and (right) SR for three devices fabricated with 1 µm thick CST 

alloys/ 3 µm thick CdTe and deposited at different substructure temperatures. 

 

 
Figure 65  The (left) VOC and doping concentration of CST (25% Se)/ CdTe devices in various 

TSUB at He/O2 ambient gas. The (right) color J-V (460 to 700 nm) for four devices fabricated with 

1 µm thick CST alloys/ 3 µm thick CdTe and deposited at different substructure temperatures (550 

to 640 °C). 

 

7.6 Extrinsic Cu Doping on CST Devices 

The effect of Cu doping in CdSexTe1-x (CST)/CdTe solar cells with varying amounts of Se 

(x) has been investigated.  The Cu-based back contact was annealed at various temperatures in 

order to vary the amount of Cu in-diffusion. The solar cell configuration was 

ITO/MZO/CST/CdTe, where the composition of CST was varied from 5 to 20%. Net p-type 

doping was found to increase as the back-contact annealing temperature increased. All cells 

exhibited a decrease in VOC with increased annealing temperature (i.e., higher Cu concertation), 

presumably due to a degradation of the lifetime with increased amounts of Cu. However, cells with 
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the highest Se composition appeared to exhibit a higher degree of tolerance to the amount of Cu – 

i.e., they exhibited a smaller loss in VOC with the increased amount of Cu.   

 
Figure 66  (left) J-V curve and (right) SR showed variation of Cu annealed temperatures 

(250 to 350 ℃) in Se 20% of CST alloy. 

 

Today, the most essential challenge remains to increase the p-type net doping concentration 

of CST alloys and CdTe.  The use of Cu for the formation of the back contact is also responsible 

for establishing the p-type doping and therefore plays a significant role in influencing both VOC 

and FF. A certain amount of Cu is beneficial for CdTe solar cells performance. In contrast, 

excessive Cu-doped causes degradation in the performance of the cells as it forms lifetime-limiting 

defects. The back-contact annealing temperatures can be used to control the amount of Cu 

diffusing into a bulk material, and optimize performance. 

Cu can typically form two types of defects in CdTe; a substitutional defect (CuCd) and an 

interstitial defect (Cui). Cui is a shallow donor level (0.01 eV), and CuCd is a deeper acceptor level 

(0.22 eV) [75].  The formation of CuCd (following back contact processing) relies on the presence 

of Cd vacancies (VCd), which is a deeper acceptor than CuCd.  P-type doping levels achieved with 

Cu are in the range of ~1014 cm-3, which has been sufficient to reach VOC’s in the mid to high 800 

mV range and yield low enough conductivity not to limit the FF of the cell.  
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Figure 67  The doping concentration of CST (20% Se)/ CdTe devices in various Cu annealed 

temperatures (200 to 350 ℃) by C-V measurement. 

 

 
Figure 68  The VOC and doping concentration of CST (20% Se)/ CdTe devices in various Cu 

annealed temperatures (200 to 350 ℃). 

 

It is well known that the minority carrier lifetime is indispensable to improve the overall 

performance for CdTe thin film solar cells. In fact, the CdTe thin film solar cell has a relatively 

low tolerance for Cu due to a decrease in minority carrier lifetime, so that excessive Cu is 

detrimental for the CdTe cell. Alloying CdTe with CdSe has resulted in absorbers with 

significantly higher lifetimes. 

Cu diffusion is a standard process for the formation of effective back contact and p-type 

net doping for CdTe solar cells. Recent advances in CdTe technology have demonstrated that the 

use of CST alloys as absorber layer can lead to substantially higher short circuit current (JSC) and 
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efficiencies of 22 % have been demonstrated [122]. Therefore, investigating the p-type net doping 

concentration of CST is essential in order to understand the role of Cu in these alloys. 

A set of CST solar cells (x=20 %) were processed @ different Cu annealing temperatures 

(200 to 350 ℃) in order to vary the amount of Cu incorporated into the absorber layer. Figure 66 

(a) and (b) show the J-V and SR data, respectively. The results exhibit a trend similar to the 

traditional CdS/CdTe solar cells. The low Cu temperatures cause the rollover in the J-V, while the 

highest Cu annealing temperatures lead to excessive Cu doping and degradation in the minority 

carrier lifetime as shown at long wavelength behavior of the SR data. The optimal Cu temperature 

for the CST devices was found to be in the range of 285-290 ⁰C.  This temperature is higher than 

what was found to be optimal for regular CdS/CdTe devices. The results may suggest that CST 

alloys can tolerate a higher Cu dose/doping than CdTe. 

Carrier density as a function of distance from the bulk junction was extracted from room 

temperature capacitance-voltage (C-V) taken at 10 kHz. Figure 67 shows the doping concentration 

of CST (20% Se) devices processed at different Cu annealing temperatures (200 to 350 ℃) (same 

as samples in Figure 66.). The net doping concentration increases at higher annealing temperatures 

(i.e. higher amounts of Cu), which also results in smaller depletion width. At 350 ℃ the acceptor 

carrier concentration was approximately 1.45E+15 cm-3. Figure 68 shows the VOC and doping as 

a function of the Cu annealing temperature. VOC reaches its maximum value @ 285 ℃, 

corresponding to a doping level of 4.00E+14 cm-3.  However,  further increases in doping result in 

VOC degradation due to an apparent lifetime degradation at these high Cu levels. 

Figure 69 shows TRPL measurements for two samples annealed at 285 ℃ and 325 ℃ 

following the application of the Cu-back contact.  The sample annealed at 285 ℃ exhibits a slower 

decay indicating a longer lifetime; the lifetime for that sample (annealed @ 325 ℃) is similar to 
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what was previously obtained for CdTe cells (i.e. without the CST alloy), while the sample 

annealed at 285 ℃ exhibits significantly higher lifetime (6-7X) and as shown in Table 6.2 higher 

efficiency. 

 
Figure 69  Time-resolved photoluminescence decay of the CST(20% Se)/CdTe devices in 

various excitation power at Cu annealed temperature 285 and 325 ℃ respectively. 

 

Solar cells annealed at low temperatures (< 250℃) exhibit high current density and 

relatively high fill factor, but low and inconsistent VOC typically in the range of 750 – 800 mV; 

although lifetime data is not available at this time for samples annealed @ 200 ℃, the low VOC 

can be attributed to the lower doping (see Figure 65 above) and potentially lower lifetimes.  Solar 

cells annealed at the highest temperatures (350 ℃) exhibited the highest net doping; however, their 

VOC was lower than samples annealed @ temperatures in the range 250 – 285 ℃; this is believed 

to be due to significantly lower lifetimes assuming the trend shown in Table 7.3 continues. 

Table 7.4  The minority carrier lifetime and cell efficiency of CST/CdTe devices in different 
Cu annealed temperatures. 
 

Cu annealed 

temperatures 

(℃) 

  

Estimated 

Minority 

carrier 

lifetime 

(ns) 

    

Cell 

efficiency 

(%) 

285  95   17.5% 

325  15   13.5% 
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Figure 70  The solar cell parameters (VOC, JSC, FF, and Eff) in various Se compositions 

(x=10, 15, and 20 %) of CST alloy at different Cu annealed temperatures (250 to 350 ℃). 

 

Similar experiments as those described in Figure 66 (left) and (right) were repeated for 

smaller Se compositions (x=10 & 15 %).  The device results for all compositions are summarized 

in Figure 70. The overall trends are similar for all compositions. Optimum performance is achieved 

around 285 to 290 ℃, while higher temperatures lead to performance degradation. However, the 

decrease in VOC for the devices with x=20 % (highest Se composition used to-date) is significantly 

smaller, suggesting that the addition of Se may allow a higher amount of Cu to be incorporated in 

the CST/CdTe cells. The best performance achieved to-date as a result of optimizing Se 

composition and Cu annealing temperatures was achieved for x=20 % and TANN=290 ℃ (for Cu); 

this cell (not the same as in Table 7.4) had a VOC, JSC, and FF of 820 mV, 28.6 mA/cm2, and 74.8 

% respectively, corresponding to an efficiency of 17.6 % (without AR coating) (Figure 70). 

Cu back-contact is used as a way to extrinsically dope CdTe, and it is crucial for the 

performance of CST/CdTe solar cells. The net p-type concentration for CST appears to decrease 
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as the Se composition increases, which along with the resulting lower bandgap lead to lower VOC. 

This work studied CST allows with Se composition up to x=20 %.  The effect of Cu doping was 

found to be similar to what is known about CdTe cells (i.e.no CST):  an optimum amount of Cu 

must be achieved to maximize doping and lifetime, with excessive Cu doping leading to 

performance degradation due to lifetime degradation. The amount of net p-doping can be 

controlled by varying the back-contact annealing temperatures (200 to 350 ℃) to adjust the amount 

of Cu in-diffusion.  It is found out the optimum for solar cell performance at annealing temperature 

range is 285 to 290 ℃, which is higher than the optimum temperature used for CdTe cells (i.e., no 

CST).  It was also shown that the minority carrier lifetime significantly improves (6-7X) in CST 

alloys and that the decrease in VOC at high levels (i.e. excessive) of Cu is smaller at high Se 

compositions. This suggests that CST compounds can potentially tolerate more Cu than CdTe.  

7.7 Extrinsic Group Ⅴ Doping on CST Devices 

The extrinsic doping with group V materials is widely used in the polycrystalline CdTe 

thin film solar cells.  Typical group V p-type dopants include Phosphorus, Arsenic, and Antimony. 

Group V elements generally replace Te (Group VI materials) to form acceptor states. According 

to CdTe summary of defects, P and As produce shallow acceptor defects (0.07 and 0.1 eV from 

VBM respectively); thus the CST alloys are suggested to result in similar defect states with typical 

CdTe [123]. Unlikely the Group I dopants (Cu), interstitials were not found to be the primary 

compensating defects for group V materials in  CST alloys. When a P or As atom try to occupy a 

Te site, it generates the substitutional defect PTe or AsTe where it is surrounded by four Cd atoms 

[124]. The challenge of using Group V dopants is the high formation energy to form Pi and Asi in 

the compensation defects. In this case, the CST alloy has remained unknown process for Group V 

p-type doping in the defect states compared to CdTe. Also, under equilibrium growth conditions, 
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the Femi level was found be located at 0.32eV and 0.36eV for P-doping elements by using P and 

As respectively [125]. The devices have corresponded to a net acceptor density of above 1014 cm3. 

In the following section, As were incorporated in CST and CdTe.  The effect of the group V 

dopants was investigated and compared to undoped CST/CdTe cells. Incorporating these elements 

and sequentially activating them to form the desired acceptors can be challenging. Dopants can be 

introduced through post-growth incorporation methods using diffusion, which may require very 

high temperatures to achieve sufficient concentrations in bulk. [126].   

Initially, the study of CdCl2 HT has been investigated on the low As doped CST samples. 

In Table 7.5, the As-deposited sample shows the lower performance due to the lack of Cl doping 

and lifetime issue. The CdCl2 HT temperatures start to increase the VOC improve considerably as 

same as the current density, which shows in Figure 71. The SR is demonstrated that the lifetime 

increased the carrier collection as the CdCl2 HT temperatures increased. However, the low As 

doped sample in the best CdCl2 temperature at 430℃ does not show any sign of enhancement. 

Even though the C-V measurement reveals the doping concentration is increased from 2E+14 to 

8E +14 cm-3, but those likely are the effect from the Cl doping to bring up the doping concentration 

which is shown in Figure 72. Thus, the next study is relative to various doping levels of As on 

CST and doped CdTe. The summary table is displayed in Table 7.6. As doping levels are initially 

increasing that is contributed to increased VOC due to the p-type net doping improve shown in 

Figure 73. The C-V measurement shows the higher As doped CST on the devices leads to increase 

the doping concentration up to 1E+15 cm-3. As a matter of fact, the highest amount of As doped 

sample reveals the reduction of FF and JSC, which is believed to be the loss of over doping due to 

decreased depletion width and lifetime in Figure 74. Therefore, it is crucial to find an optimum As 

doping level for increasing the VOC without reduction of overall performance. The highest VOC is 
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demonstrated up to 850 mV with ungraded As-doped CST/CdTe devices. Finally, in Table 7.7, the 

summary of the devices fabrication process in various compound materials and paraments show 

the essential to improve the cell efficiency to fulfill the achievement. The promising device 

configuration is ITO/MZO/As-doped CST/doped CdTe, which has the highest VOC and p-type net 

doping concentration for further improvement in future work.  

Table 7.5  The performance of devices with low As doped CST in various CdCl2 HT. 

 

 VOC (mV) FF (%) JSC (mA/cm2) Efficiency (%) 

As deposited 600 49.90%      20.41          6.11  

CdCl2 410℃ 760 50.70%      26.32        10.14  

CdCl2 430℃ 820 65.30%      29.57        15.87  

CdCl2 440℃ 810 52.90%      27.14        11.52  

 

 
Figure 71  The (left) light J-V and (right) SR of low As doped CST (20% Se) devices in as-

deposited and various CdCl2 HT temperatures (410 to 440 ℃). 
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Figure 72  The doping concentration of low As doped CST (20% Se) devices in as-deposited 

and various CdCl2 HT temperatures (410 to 440 ℃) by C-V measurement. 

 

Table 7.6  The performance of devices with different As doping levels and undoped CST.  

 

 

 
Figure 73  The (left) light J-V and (right) SR of in various As doping levels on CST (20% 

Se) and doped CdTe on the devices. 
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Figure 74  The doping concentration in various As doping levels on CST (20% Se) and 

doped CdTe on the devices by C-V measurement. 

 

Table 7.7  The performance summary of devices for various type of fabrication processes.  
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CHAPTER 8 

CONCLUSION 

The impact of MZO as a window layer in CdTe cells has been investigated.  Several MZO 

characteristics were studied; the effect of its thickness, composition, and the impact of annealing. 

It was found that the composition of MZO affects the position of its conduction band and that a 

composition that results in a positive ΔEc (“a small spike”) is beneficial to the cell performance.  

It was also found that MZO/CdTe devices are relatively more tolerant than the traditional 

CdS/CdTe device to the CdCl2 heat treatment, as optimum annealing temperatures exceeded the 

typical 400℃ used for CdS/CdTe.  The MZO/CdTe junctions could be annealed at temperatures 

as high as 430 ℃ without delamination or flaking. It was also found that the MZO/CdTe interface 

must be annealed in the presence of CdS vapors at temperatures over 600 ℃ in order to avoid the 

formation of a junction that results in the rollover in the cell’s JV characteristics. The instability 

of the MZO/CdTe interface will be continuously investigated in future research. 

The process of forming and depositing CST films and MZO/CST/CdTe junctions was also 

investigated.  Inter-diffusion of CdSe is one of the methods to form the CST layer as an absorber; 

thus the effect of CdSe thickness on the Se profile in CST films produced by annealing CdTe/CdSe 

bilayers has been investigated. TEM analysis suggested that CST films synthesized with “thin” (< 

300 Å) CdSe films resulted in well inter-diffused CST films and a homogeneous grain structure. 

Thick (>300 Å) CdSe films resulted in CST alloys with smaller grain structure at the interface and 

inhomogeneous Se profiles, with a Se-rich region and Te-rich region.  These findings can be used 

to support the loss in VOC for devices fabricated with CST films synthesized via annealing of 
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CdTe/CdS bilayers, and suggest that interdiffusion of CdSe/CdTe bilayers is only viable for small 

Se compositions in order to avoid void formation due to the “Kirkendall effect .” 

The effect of Se composition on MZO/CST/CdTe devices has also been studied using 

direct sublimation of CST alloys using the CSS process. Devices with higher Se composition 

exhibited higher current density and minority carrier lifetime. However, lower VOC (750 – 800 mV) 

still was measured in devices with high Se composition of CST alloys that it can be attributed to 

low doping concentration, reduction of bandgap, and small grain size in the absorber layer. The 

CSS substrate temperature and the CdCl2 annealing temperatures have been found to be critical in 

achieving high-quality grain structures, with grains that extend throughout the absorber thickness. 

As substrate temperature is increased from 550 ℃ to 620 ℃, the grain size increases by a factor 

of 3X, and grains can extend through the entire thickness of the absorber.  The VOC has improved 

from 800 to 830mV in devices with Se composition (> 20%). Also, devices annealed at 430 ℃ for 

CdCl2 HT exhibited a graded Se profile vs. an abrupt profile for lower temperatures, suggesting 

that the CdCl2 HT can be used to adjust the Se profile in the CST films. 

Cu-based back-contacts are critical to the performance of CST/CdTe solar cells. P-type net 

doping in CST decreases as the Se composition increase and can result in lower VOC. For this 

work, the effect of Cu on CST films with 20% Se composition has been investigated;  the back 

contact annealing temperature was used to vary the amount of Cu diffused into the absorber. An 

optimum amount of Cu can optimize the acceptor net doping concentration for optimum VOC and 

FF. However, excessive Cu doping seems to be detrimental to performance due to lifetime 

degradation.  It was found out the best temperature for annealing the Cu based back contacts was 

in the range 285 to 290℃, and above or below this temperature, the VOC decreased.   This 
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temperature range is higher than what is typically used for USF CdTe (only) cells.  It is therefore 

suggested that CST films can potentially tolerate more Cu than CdTe. 

Finally, arsenic (As) was used to dope CST and CdTe films during the CSS.  A doping 

level of 1016 cm-3 was achieved with a corresponding VOC of 850 mV for a Se composition of 20%.  

This VOC is higher than what has been achieved for undoped CST/CdTe junctions in this work. 
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